Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
BMC Genomics ; 25(1): 321, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38556880

ABSTRACT

Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-rearing industry. Whole-transcriptome analyses have revealed non-coding RNAs and their regulatory networks in N. bombycis infected embryos and larvae. However, transcriptomic changes in the microsporidia proliferation and host responses in congenitally infected embryos and larvae remains unclear. Here, we simultaneously compared the transcriptomes of N. bombycis and its host B. mori embryos of 5-day and larvae of 1-, 5- and 10-day during congenital infection. For the transcriptome of N. bombycis, a comparison of parasite expression patterns between congenital-infected embryos and larva showed most genes related to parasite central carbon metabolism were down-regulated in larvae during infection, whereas the majority of genes involved in parasite proliferation and growth were up-regulated. Interestingly, a large number of distinct or shared differentially expressed genes (DEGs) were revealed by the Venn diagram and heat map, many of them were connected to infection related factors such as Ricin B lectin, spore wall protein, polar tube protein, and polysaccharide deacetylase. For the transcriptome of B. mori infected with N. bombycis, beyond numerous DEGs related to DNA replication and repair, mRNA surveillance pathway, RNA transport, protein biosynthesis, and proteolysis, with the progression of infection, a large number of DEGs related to immune and infection pathways, including phagocytosis, apoptosis, TNF, Toll-like receptor, NF-kappa B, Fc epsilon RI, and some diseases, were successively identified. In contrast, most genes associated with the insulin signaling pathway, 2-oxacarboxylic acid metabolism, amino acid biosynthesis, and lipid metabolisms were up-regulated in larvae compared to those in embryos. Furthermore, dozens of distinct and three shared DEGs that were involved in the epigenetic regulations, such as polycomb, histone-lysine-specific demethylases, and histone-lysine-N-methyltransferases, were identified via the Venn diagram and heat maps. Notably, many DEGs of host and parasite associated with lipid-related metabolisms were verified by RT-qPCR. Taken together, simultaneous transcriptomic analyses of both host and parasite genes lead to a better understanding of changes in the microsporidia proliferation and host responses in embryos and larvae in N. bombycis congenital infection.


Subject(s)
Bombyx , Nosema , Animals , Transcriptome , Larva/genetics , Larva/metabolism , Histones/metabolism , Lysine/metabolism , Nosema/physiology , Gene Expression Profiling , Cell Proliferation , Lipids , Bombyx/genetics
2.
Nanoscale Horiz ; 9(5): 752-763, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38465422

ABSTRACT

Reservoir computing (RC), a variant of recurrent neural networks (RNNs), is well-known for its reduced energy consumption through exclusive focus on training the output weight and its superior performance in handling spatiotemporal information. Implementing these networks in hardware requires devices with superior fading memory behavior. Unlike filament-based two-terminal devices, those relying on ferroelectric switching demonstrate improved voltage reliability, while three-terminal transistors provide additional active control. HfO2-based ferroelectric materials such as Hf0.5Zr0.5O2 (HZO), have garnered attention for their scalability and seamless integration with CMOS technology. This study implements a RC hardware based on MoS2-HZO integrated device structure with enhanced spontaneous polarization field. By adjusting the oxygen vacancy concentration, the devices exhibit consistent responses to both identical and nonidentical voltages, making them suitable for diverse RC applications. The high accuracy of MNIST handwritten digits recognition highlights the rich reservoir states of the traditional RC architecture. Additionally, the impact of masks on RC implementation is assessed, showcasing the device's capability for spatiotemporal signal analysis. This development paves the way for implementing energy-efficient and high-performance computing solutions.

3.
Adv Sci (Weinh) ; 11(12): e2303447, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38234245

ABSTRACT

The development of all-in-one devices for artificial visual systems offers an attractive solution in terms of energy efficiency and real-time processing speed. In recent years, the proliferation of smart sensors in the growth of Internet-of-Things (IoT) has led to the increasing importance of in-sensor computing technology, which places computational power at the edge of the data-flow architecture. In this study, a prototype visual sensor inspired by the human retina is proposed, which integrates ferroelectricity and photosensitivity in two-dimensional (2D) α-In2Se3 material. This device mimics the functions of photoreceptors and amacrine cells in the retina, performing optical reception and memory computation functions through the use of electrical switching polarization in the channel. The gate-tunable linearity of excitatory and inhibitory functions in photon-induced short-term plasticity enables to encode and classify 12 000 images in the Mixed National Institute of Standards and Technology (MNIST) dataset with remarkable accuracy, achieving ≈94%. Additionally, in-sensor convolution image processing through a network of phototransistors, with five convolutional kernels electrically pre-programmed into the transistors is demonstrated. The convoluted photocurrent matrices undergo straightforward arithmetic calculations to produce edge and feature-enhanced scenarios. The findings demonstrate the potential of ferroelectric α-In2Se3 for highly compact and efficient retinomorphic hardware implementation, regardless of ambipolar transport in the channel.

4.
3D Print Med ; 10(1): 2, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38246981

ABSTRACT

BACKGROUND: Surgical management for intracranial and extracranial communicating tumors is difficult due to the complex anatomical structures. Therefore, assisting methods are urgently needed. Accordingly, this study aimed to investigate the utility of a three-dimensional (3D)-printed model in the treatment of intracranial and extracranial communicating tumors as well as its applicability in surgical planning and resident education. METHODS: Individualized 3D-printed models were created for eight patients with intracranial and extracranial communicating tumors. Based on these 3D-printed models, a comprehensive surgical plan was made for each patient, after which the patients underwent surgery. The clinicopathological data of patients were collected and retrospectively analyzed to determine surgical outcomes. To examine the educational capability of the 3D-printed models, specialists and resident doctors were invited to review three of these cases and then rate the clinical utility of the models using a questionnaire. RESULTS: The 3D-printed models accurately replicated anatomical structures, including the tumor, surrounding structures, and the skull. Based on these models, customized surgical approaches, including the orbitozygomatic approach and transcervical approach, were designed for the patients. Although parameters such as operation time and blood loss varied among the patients, satisfactory surgical outcomes were achieved, with only one patient developing a postoperative complication. Regarding the educational applicability of the 3D-printed model, the mean agreement for all eight questionnaire items was above six (seven being complete agreement). Moreover, no significant difference was noted in the agreement scores between specialists and residents. CONCLUSION: The results revealed that 3D-printed models have good structural accuracy and are potentially beneficial in developing surgical approaches and educating residents. Further research is needed to test the true applicability of these models in the treatment of intracranial and extracranial communicating tumors.

5.
BMC Genomics ; 24(1): 420, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37495972

ABSTRACT

BACKGROUND: The interaction networks between coding and non-coding RNAs (ncRNAs) including long non-coding RNA (lncRNA), covalently closed circular RNA (circRNA) and miRNA are significant to elucidate molecular processes of biological activities and interactions between host and pathogen. Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-feeding industry. However, little is known about ncRNAs that take place in the microsporidia congenital infection. Here we conducted whole-transcriptome RNA-Seq analyses to identify ncRNAs and regulatory networks for both N. bombycis and host including silkworm embryos and larvae during the microsporidia congenital infection. RESULTS: A total of 4,171 mRNAs, 403 lncRNA, 62 circRNAs, and 284 miRNAs encoded by N. bombycis were identified, among which some differentially expressed genes formed cross-talk and are involved in N. bombycis proliferation and infection. For instance, a lncRNA/circRNA competing endogenous RNA (ceRNA) network including 18 lncRNAs, one circRNA, and 20 miRNAs was constructed to describe 14 key parasites genes regulation, such as polar tube protein 3 (PTP3), ricin-B-lectin, spore wall protein 4 (SWP4), and heat shock protein 90 (HSP90). Regarding host silkworm upon N. bombycis congenital infection, a total of 14,889 mRNAs, 3,038 lncRNAs, 19,039 circRNAs, and 3,413 miRNAs were predicted based on silkworm genome with many differentially expressed coding and non-coding genes during distinct developmental stages. Different species of RNAs form interacting network to modulate silkworm biological processes, such as growth, metamorphosis and immune responses. Furthermore, a lncRNA/circRNA ceRNA network consisting of 140 lncRNAs, five circRNA, and seven miRNAs are constructed hypothetically to describe eight key host genes regulation, such as Toll-6, Serpin-6, inducible nitric oxide synthase (iNOS) and Caspase-8. Notably, cross-species analyses indicate that parasite and host miRNAs play a vital role in pathogen-host interaction in the microsporidia congenital infection. CONCLUSION: This is the first comprehensive pan-transcriptome study inclusive of both N. bombycis and its host silkworm with a specific focus on the microsporidia congenital infection, and show that ncRNA-mediated regulation plays a vital role in the microsporidia congenital infection, which provides a new insight into understanding the basic biology of microsporidia and pathogen-host interaction.


Subject(s)
MicroRNAs , Microsporidiosis , Nosema , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Circular/genetics , Nosema/physiology , Host-Pathogen Interactions/genetics , MicroRNAs/genetics , RNA, Messenger , Gene Regulatory Networks
6.
Small ; 19(38): e2302842, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37194958

ABSTRACT

By harnessing the physically unclonable properties, true random number generators (TRNGs) offer significant promises to alleviate security concerns by generating random bitstreams that are cryptographically secured. However, fundamental challenges remain as conventional hardware often requires complex circuitry design, showing a predictable pattern that is susceptible to machine learning attacks. Here, a low-power self-corrected TRNG is presented by exploiting the stochastic ferroelectric switching and charge trapping in molybdenum disulfide (MoS2 ) ferroelectric field-effect transistors (Fe-FET) based on hafnium oxide complex. The proposed TRNG exhibits enhanced stochastic variability with near-ideal entropy of ≈1.0, Hamming distance of ≈50%, independent autocorrelation function, and reliable endurance cycle against temperature variations. Furthermore, its unpredictable feature is systematically examined by machine learning attacks, namely the predictive regression model and the long-short-term-memory (LSTM) approach, where nondeterministic predictions can be concluded. Moreover, the generated cryptographic keys from the circuitry successfully pass the National Institute of Standards and Technology (NIST) 800-20 statistical test suite. The potential of integrating ferroelectric and 2D materials is highlighted for advanced data encryption, offering a novel alternative to generate truly random numbers.

7.
Adv Mater ; 35(2): e2204949, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36366910

ABSTRACT

Spiking neural network (SNN), where the information is evaluated recurrently through spikes, has manifested significant promises to minimize the energy expenditure in data-intensive machine learning and artificial intelligence. Among these applications, the artificial neural encoders are essential to convert the external stimuli to a spiking format that can be subsequently fed to the neural network. Here, a molybdenum disulfide (MoS2 ) hafnium oxide-based ferroelectric encoder is demonstrated for temporal-efficient information processing in SNN. The fast domain switching attribute associated with the polycrystalline nature of hafnium oxide-based ferroelectric material is exploited for spike encoding, rendering it suitable for realizing biomimetic encoders. Accordingly, a high-performance ferroelectric encoder is achieved, featuring a superior switching efficiency, negligible charge trapping effect, and robust ferroelectric response, which successfully enable a broad dynamic range. Furthermore, an SNN is simulated to verify the precision of the encoded information, in which an average inference accuracy of 95.14% can be achieved, using the Modified National Insitute of Standards and Technology (MNIST) dataset for digit classification. Moreover, this ferroelectric encoder manifests prominent resilience against noise injection with an overall prediction accuracy of 94.73% under various Gaussian noise levels, showing practical promises to reduce the computational load for the neural network.


Subject(s)
Artificial Intelligence , Molybdenum , Action Potentials/physiology , Neurons/physiology , Neural Networks, Computer
8.
Front Pharmacol ; 14: 1309930, 2023.
Article in English | MEDLINE | ID: mdl-38259264

ABSTRACT

Background: Rituximab (RTX) is a monoclonal antibody that selectively targets CD20 and is frequently used in the treatment of membranous nephropathy (MN). Analysis of the therapeutic efficacy and safety of RTX in treating MN in practice and a comparative pharmacoeconomic analysis of the RTX and traditional tacrolimus (TAC) regimens can provide valuable insights to aid decision-making by the government and relevant medical insurance departments. Methods: We conducted a statistical analysis of medical records from patients diagnosed with MN who underwent RTX treatment between 1 January 2019 and 1 January 2023. The TAC data were obtained from the clinical literature. The efficacy rates and incidence of adverse effects (AEs) were calculated to compare the efficacy and safety of RTX and TAC. Based on the patient's disease status, we developed a Markov model to compare the total cost, remission rate, and incremental cost-effectiveness ratio (ICER) of the two regimens. Both univariate and probability sensitivity analyses were performed to validate the stability of the developed model. Results: The RTX group enrolled 53 patients with MN, and the 12-month overall efficacy rate was not significantly different from that of the TAC group with 35 patients (86.79% vs. 71.4%, p = 0.0131); however, the relapse rate was significantly lower in the RTX group (3.77% vs. 22.8%, p = 0.016). The RTX group demonstrated no severe AEs (SAEs), while the TAC group demonstrated six cases of SAEs, including 4 cases of severe pneumonia, 1 case of lung abscess and 1 case of interstitial lung disease, accounting for 7.89% of traditional tacrolimus-treated patients. The baseline analysis results revealed that over a 5-year post-treatment period, RTX increased quality-adjusted life years (QALYs) by 0.058 and costs by ¥7,341. Assuming three times the 2022 domestic gross domestic product as the willingness-to-pay (WTP) threshold per QALY, the ICER of RTX compared to TAC was ¥124,631.14/QALY, which is less than the WTP threshold of ¥257,094/QALY, indicating that RTX treatment is approximately two times more cost-effective compared to TAC. Conclusion: The current analysis indicates that despite the expensive unit price of RTX, it remains a cost-effective treatment option for MN compared to TAC.

9.
J Neurosurg ; : 1-10, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36461822

ABSTRACT

OBJECTIVE: The aim of this study was to build a convolutional neural network (CNN)-based prediction model of glioblastoma (GBM) molecular subtype diagnosis and prognosis with multimodal features. METHODS: In total, 222 GBM patients were included in the training set from Sun Yat-sen University Cancer Center (SYSUCC) and 107 GBM patients were included in the validation set from SYSUCC, Xuanwu Hospital Capital Medical University, and the First Hospital of Jilin University. The multimodal model was trained with MR images (pre- and postcontrast T1-weighted images and T2-weighted images), corresponding MRI impression, and clinical patient information. First, the original images were segmented using the Multimodal Brain Tumor Image Segmentation Benchmark toolkit. Convolutional features were extracted using 3D residual deep neural network (ResNet50) and convolutional 3D (C3D). Radiomic features were extracted using pyradiomics. Report texts were converted to word embedding using word2vec. These three types of features were then integrated to train neural networks. Accuracy, precision, recall, and F1-score were used to evaluate the model performance. RESULTS: The C3D-based model yielded the highest accuracy of 91.11% in the prediction of IDH1 mutation status. Importantly, the addition of semantics improved precision by 11.21% and recall in MGMT promoter methylation status prediction by 14.28%. The areas under the receiver operating characteristic curves of the C3D-based model in the IDH1, ATRX, MGMT, and 1-year prognosis groups were 0.976, 0.953, 0.955, and 0.976, respectively. In external validation, the C3D-based model showed significant improvement in accuracy in the IDH1, ATRX, MGMT, and 1-year prognosis groups, which were 88.30%, 76.67%, 85.71%, and 85.71%, respectively (compared with 3D ResNet50: 83.51%, 66.67%, 82.14%, and 70.79%, respectively). CONCLUSIONS: The authors propose a novel multimodal model integrating C3D, radiomics, and semantics, which had a great performance in predicting IDH1, ATRX, and MGMT molecular subtypes and the 1-year prognosis of GBM.

10.
World J Clin Cases ; 10(30): 11162-11171, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36338197

ABSTRACT

BACKGROUND: Primary intracranial malignant melanoma (PIMM) is rare, and its prognosis is very poor. It is not clear what systematic treatment strategy can achieve long-term survival. This case study attempted to identify the optimal strategy for long-term survival outcomes by reviewing the PIMM patient with the longest survival following comprehensive treatment and by reviewing the related literature. CASE SUMMARY: The patient is a 47-year-old Chinese man who suffered from dizziness and gait disturbance. He underwent surgery for right cerebellum melanoma and was subsequently diagnosed by pathology in June 2000. After the surgery, the patient received three cycles of chemotherapy but relapsed locally within 4 mo. Following the second surgery for total tumor resection, the patient received an injection of Newcastle disease virus-modified tumor vaccine, interferon, and ß-elemene treatment. The patient was tumor-free with a normal life for 21 years before the onset of the recurrence of melanoma without any symptoms in July 2021. A third gross-total resection with adjuvant radiotherapy and temozolomide therapy was performed. Brain magnetic resonance imaging showed no residual tumor or recurrence 3 mo after the 3rd operation, and the patient recovered well without neurological dysfunction until the last follow-up in June 2022, which was 22 years following the initial treatment. CONCLUSION: It is important for patients with PIMM to receive comprehensive treatment to enable the application of the most appropriate treatment strategies. Long-term survival is not impossible in patients with these malignancies.

11.
Front Microbiol ; 13: 1025613, 2022.
Article in English | MEDLINE | ID: mdl-36312914

ABSTRACT

The microsporidian fungal pathogen Enterocytozoon bieneusi is a unicellular parasite that infects humans and various animals, including pigs. Currently, there are few data on E. bieneusi infection a in diarrheic pigs in Chongqing and Sichuan Provinces, China. This study aims to determine the prevalence and genotype distribution of E. bieneusi in diarrheic pigs. In total, 514 fecal samples from diarrheic pigs were obtained from 14 large-scale farms in Chongqing and Sichuan Provinces (326 suckling pigs, 17 weaned pigs, 65 fattening pigs, and 106 sows). To identify the E. bieneusi genotypes, genomic DNA was isolated from the samples and tested by nested PCR, targeting the internal transcribed spacer region of the rRNA followed by DNA sequence analysis. The overall prevalence of E. bieneusi was 79.8% (410/514), with rates of 84.9% (90/106) in sows and 64.7% (11/17) in weaned pigs. We found 61 different genotypes, including seven known genotypes (E, F, CHG1, Peru8, CAF1, B, and BEB17) and 54 novel genotypes. These 54 new genotypes are variants of eight known genotypes (SDD2, A, B, HLJD-IV, PigSpEb1, O, JLD-I, and BEB17) based on their sequence similarities. Phylogenetically, all of the identified genotypes clustered with counterparts belonging to Group 1 and Group 2 of E. bieneusi. Therefore, we found a higher prevalence of E. bieneusi in sows than in preweaned and weaned pigs. These findings indicate that diarrheic pigs could be a potential reservoir host, which can contaminate the environment and be a source of microsporidia in humans and other animals.

12.
J Neurooncol ; 158(3): 463-470, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35657459

ABSTRACT

INTRODUCTION: Surgical resection of medulloblastoma (MB) remains a challenge. At present, a variety of tracers have been used for intraoperative tumor visualization. However, there are few reports on the intraoperative visualization of MB. Hence, we reported our experience of applying fluorescein sodium (FS) in MB surgery. METHODS: We retrospectively analyzed the clinical information of patients with MB confirmed by surgery and pathology from January 2016 to December 2020 from Sun Yat-sen University Cancer Center. A total of 62 patients were enrolled, of which 27 received intraoperative FS and 35 did not. The intraoperative dose of FS was 3 mg/kg. RESULTS: Among the 62 patients, 42 were males, and twenty were females. The age of onset in the FS group was 9.588 ± 7.322, which in the non-fluorescein sodium group was 13.469 ± 10.968, p = 0.198. We did not find significant differences in tumor location, tumor size, tumor resection, tumor histology, and preoperative symptoms (hydrocephalus, headache, vomit, balance disorder) between the groups. There was no significant difference in the postoperative symptoms (hydrocephalus, headache, vomiting, balance disorder, and cerebellar mutism). However, patients in the FS group had a relatively low incidence of balance disorder and cerebellar mutism. There was definite fluorescence of tumor in all cases of the FS group, and even the tiny metastatic lesion was visible. No case had side effects related to the use of FS. CONCLUSIONS: FS is safe and effective in MB surgery. Whether the application of FS for surgery can reduce complications remains to be studied in the future.


Subject(s)
Cerebellar Neoplasms , Hydrocephalus , Medulloblastoma , Mutism , Cerebellar Neoplasms/epidemiology , Female , Fluorescein , Headache , Humans , Hydrocephalus/complications , Male , Medulloblastoma/complications , Medulloblastoma/diagnosis , Medulloblastoma/surgery , Mutism/etiology , Retrospective Studies , Sodium
13.
Ann Surg Oncol ; 29(6): 3684-3693, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35181815

ABSTRACT

BACKGROUND: Brain metastases (BMs) are the most serious complication of lung cancer, affecting the prognosis of lung cancer patients, and pose distinct clinical challenges. This study was designed to explore the prognostic factors related to lung cancer BM and the value of surgical resection in BMs from lung cancer. METHODS: A retrospective analysis was performed on 714 patients with lung cancer BMs screened between January 2010 and January 2018 at the Sun Yat-sen University Cancer Center. A 1:1 propensity score matching analysis was performed to reduce the potential bias between the surgery and the nonsurgery group. In both the raw and the propensity-score matched dataset, univariate and multivariate Cox proportional hazards regression analyses were used to evaluate risk factors for survival. RESULTS: After matching, 258 patients (129 surgery, 129 no surgery) were analyzed. Multivariate analyses after propensity score matching demonstrated that surgical resection was an independent protective factor for overall survival (OS), and older age, lower Karnofsky Performance Scale (KPS) score, and extracranial metastases were independent risk factors for worse OS. Patients without extracranial metastases, without synchronous BM and with a single BM had a better prognosis. CONCLUSIONS: The findings showed that surgical resection, age, KPS score, and extracranial metastases are independent prognostic factors for predicting the OS of patients with lung cancer BMs, and surgical resection for brain metastatic lesions could significantly improve the OS. However, only certain groups of patients with BMs can benefit from intracranial lesion resection, such as no extracranial metastases and metachronous metastases.


Subject(s)
Brain Neoplasms , Lung Neoplasms , Brain Neoplasms/secondary , Cohort Studies , Humans , Lung Neoplasms/pathology , Prognosis , Retrospective Studies
14.
Biochem Biophys Res Commun ; 598: 26-31, 2022 04 02.
Article in English | MEDLINE | ID: mdl-35151200

ABSTRACT

Globins are heme proteins such as hemoglobin (Hb), myoglobin (Mb) and neuroglobin (Ngb), playing important roles in biological system. In addition to normal functions, zebrafish Ngb was able to penetrate cell membranes, whereas less was known for other globin members. In this study, to improve the cell-membrane-penetrating activity of globins, we used sperm whale Mb as a model protein and constructed a quadruple mutant of G5K/Q8K/A19K/V21K Mb (termed 4K Mb), by introduction of four positive charges on the protein surface, which was designed according to the amino acid alignment with that of zebrafish Ngb. Spectroscopic and crystallographic studies showed that the four positively charged Lys residues did not affect the protein structure. Cell-membrane-penetrating essay further showed that 4K Mb exhibited enhanced activity compared to that of native Mb. This study provides valuable information for the effect of distribution of charged residues on the protein structure and the cell-membrane-penetrating activity of globins. Therefore, it will guide the design of protein-based biomaterials for biological applications.


Subject(s)
Cell Membrane/metabolism , Myoglobin/chemistry , Myoglobin/metabolism , Animals , Cell Membrane/drug effects , Cell Survival/drug effects , Circular Dichroism , Crystallography, X-Ray , Fluorescein-5-isothiocyanate/chemistry , Humans , Lysine/chemistry , MCF-7 Cells , Mutation , Myoglobin/genetics , Myoglobin/pharmacokinetics , Spectrophotometry, Ultraviolet , Sperm Whale
15.
Transpl Immunol ; 72: 101537, 2022 06.
Article in English | MEDLINE | ID: mdl-35031454

ABSTRACT

OBJECTIVE: To explore the effect of erythropoietin (EPO) on the AMP-activated protein kinase (AMPK)/nicotinamide adenine dinucleotide phosphatase oxidase 4 (NOX4) signaling pathway during renal ischemia reperfusion injury (RIRI) in rats. METHODS: A rat model of RIRI was established by clamping the left renal pedicle and removing the right kidney. The rats in the sham group did not have their left renal pedicle clamped. Rats with a model of RIRI were randomly divided into RIRI alone (control), erythropoietin treatment (EPO/RIRI), and Compound C treatment (CPC/RIRI) groups. Hematoxylin-eosin (H&E) staining was used to examine pathological kidney damage. Serum creatinine and urea nitrogen levels were measured to evaluate renal function. Western blotting was performed to detect the expression levels of phosphorylated p-AMPK and total AMPK protein in the kidneys. RT-PCR was used to evaluate the mRNA levels of Nox4 and p22 in the kidneys. Oxidative stress-related indices (ROS, CAT, GSH, SOD, and MDA) were also measured. RESULTS: EPO treatment improved kidney function by preventing kidney damage induced by the RIRI model. Preventing ischemia/reperfusion injury in the RIRI model was correlated with an increased p-AMPK/AMPK ratio and elevated activity of CAT, GSH, and SOD, which ameliorated the expression of NOX4, p22, ROS, and MDA. Moreover, treatment with CPC (an AMPK inhibitor) reduced the effects of EPO in the RIRI model. CONCLUSION: EPO treatment protected rats against RIRI in the RIRI model by alleviating oxidative stress by triggering the AMPK/NOX4/ROS pathway.


Subject(s)
Erythropoietin , Reperfusion Injury , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Animals , Erythropoietin/metabolism , Erythropoietin/pharmacology , Erythropoietin/therapeutic use , Kidney/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/pharmacology , Oxidative Stress , Rats , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/pharmacology , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology
17.
Lab Invest ; 102(7): 702-710, 2022 07.
Article in English | MEDLINE | ID: mdl-35013530

ABSTRACT

Although there have been recent advances in the molecular pathology of ependymomas, little is known about the underlying molecular evolution during its development. Here, we assessed the clinical, pathological and molecular evolutionary process of ependymoma recurrence in a 9-year-old patient who had seven recurrences of supratentorial ependymoma and died from intracranial multiregional recurrences at the age of 19 years old. Whole-genome sequencing (WGS) of 7 tumor samples (1 primary and 6 subsequent recurrent tumors) was performed to elucidate the mutation landscape and identify potential driver mutations for tumor evolution. The genetic profiles of the seven tumor specimens showed significant heterogeneity and suggested a highly branched evolutionary pattern. The mutational signatures and chromothripsis changed with treatments. Strikingly, adhesion G protein-coupled receptor L3 (ADGRL3, also known as Latrophilins 3, LPNH3) was found to be consistently mutated during the entire disease process. However, Sanger sequencing of other 78 ependymoma patients who underwent surgery at our institution showed no genetic alteration of ADGRL3, as found in the present case. The mRNA levels of ADGRL3 were significantly lower in ependymomas (n = 36), as compared with normal brain tissue (n = 3). Grade III ependymomas had the lowest ADGRL3 expression. Moreover, ependymomas with lower mRNA level of ADGRL3 had shorter overall survival. Our findings, therefore, demonstrate a rare evolutionary process of ependymoma involving ADGRL3.


Subject(s)
Ependymoma , Adult , Child , Ependymoma/genetics , Ependymoma/pathology , Ependymoma/surgery , Humans , Mutation , RNA, Messenger , Receptors, G-Protein-Coupled/genetics , Young Adult
18.
Int J Mol Sci ; 24(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36613990

ABSTRACT

Microsporidia are ubiquitous in the environment, infecting almost all invertebrates, vertebrates, and some protists. The microsporidian Nosema bombycis causes silkworms pébrine disease and leads to huge economic losses. Parasite secreted proteins play vital roles in pathogen-host interactions. Serine protease inhibitors (serpins), belonging to the largest and most broadly distributed protease inhibitor superfamily, are also found in Microsporidia. In this study, we characterized 19 serpins (NbSPNs) in N. bombycis; eight of them were predicted with signal peptides. All NbSPN proteins contain a typical conserved serpin (PF00079) domain. The comparative genomic analysis revealed that microsporidia serpins were only found in the genus Nosema. In addition to N. bombycis, a total of 34 serpins were identified in another six species of Nosema including N. antheraeae (11), N. granulosis (8), Nosema sp. YNPr (3), Nosema sp. PM-1 (3), N. apis (4), and N. ceranae (5). Serpin gene duplications in tandem obviously occurred in Nosema antheranae. Notably, the NbSPNs were phylogenetically clustered with serpins from the Chordopoxvirinae, the subfamily of Poxvirus. All 19 NbSPN transcripts were detected in the infected midgut and fat body, while 19 NbSPN genes except for NbSPN12 were found in the transcriptome of the infected silkworm embryonic cell line BmE-SWU1. Our work paves the way for further study of serpin function in microsporidia.


Subject(s)
Bombyx , Nosema , Serpins , Animals , Bees , Nosema/genetics , Serpins/genetics , Serpins/metabolism , Host-Pathogen Interactions , Genomics , Bombyx/genetics , Bombyx/metabolism
20.
Int Immunopharmacol ; 94: 107433, 2021 May.
Article in English | MEDLINE | ID: mdl-33592404

ABSTRACT

Renal ischemia-reperfusion injury (IRI) is an important cause of setting off acute kidney injury. Neutrophil-mediated immunomodulation has a pivotal role in the evolving of IRI. The HMGB1-TLR4-IL-23-IL-17A axis gives rise to neutrophil activation. Therefore, in the study, the role of the HMGB1-TLR4-IL-23-IL-17A axis in IRI was evaluated. Cell viability, inflammation, apoptosis, oxidative stress, survival, renal function and pathology, and the activation of macrophages and neutrophils were measured. Moreover, we evaluated the acetylation, translocation, and secretion of HMGB1 as well as levels of TLR-4, IL-23, IL-17A, and neutrophil chemokines (KC, LIX, and MIP-2). In vivo, anti-HMGB1 antibody decreased the acetylation, translocation, and secretion of HMGB1, reduced the expression of TLR-4, IL-23, IL-17A, KC, LIX, and MIP-2, alleviated the activation of macrophages and neutrophils, improved the survival rate and renal dysfunction, and decreased inflammation, apoptosis, oxidative stress, and pathological injury of the kidney. However, the intervention with recombinant HMGB1(R-HMGB1) significantly abolish the above effect of anti-HMGB1 in IRI. Neutralization IL-23 or IL-17A can alleviated the neutrophils mediated renal dysfunction by suppressing inflammation, apoptosis, and oxidative stress in IRI. In vitro, we confirmed that hypoxic/deoxygenation (H/R) induces the secretion of HMGB1 though acetylation on HK-2 and HMGB1 promotes the secretion of IL-23 in a HMGB1/TLR-4-dependent manner on macrophages. Together, these results implied that the HMGB1-TLR4-IL-23-IL-17A axis regulates inflammation, oxidative stress, apoptosis, and renal injury in IRI by promoting the recruitment and migration of neutrophils.


Subject(s)
Acute Kidney Injury/immunology , HMGB1 Protein/immunology , Interleukin-17/immunology , Interleukin-23/immunology , Neutrophils/immunology , Reperfusion Injury/immunology , Toll-Like Receptor 4/immunology , Acute Kidney Injury/genetics , Animals , Cell Line , Cell Movement , Humans , Interleukin-17/genetics , Interleukin-23/genetics , Kidney/immunology , Male , Mice, Inbred C57BL , Reperfusion Injury/genetics , Toll-Like Receptor 4/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...