Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(9): 096101, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38489621

ABSTRACT

Kagome metals AV_{3}Sb_{5} (A=K, Rb, or Cs) exhibit intriguing charge density wave (CDW) instabilities, which interplay with superconductivity and band topology. However, despite firm observations, the atomistic origins of the CDW phases, as well as hidden instabilities, remain elusive. Here, we adopt our newly developed symmetry-adapted cluster expansion method to construct a first-principles-based effective Hamiltonian of CsV_{3}Sb_{5}, which not only reproduces the established inverse star of David (ISD) phase, but also predict a series of D_{3h}-n states under mild tensile strains. With such atomistic Hamiltonians, the microscopic origins of different CDW states are revealed as the competition of the second-nearest neighbor V-V pairs versus the first-nearest neighbor V-V and V-Sb couplings. Interestingly, the effective Hamiltonians also reveal the existence of ionic Dzyaloshinskii-Moriya interaction in the high-symmetry phase of CsV_{3}Sb_{5} and drives the formation of noncollinear CDW patterns. Our work thus not only deepens the understanding of the CDW formation in AV_{3}Sb_{5}, but also demonstrates that the effective Hamiltonian is a suitable approach for investigating CDW mechanisms, which can be extended to various CDW systems.

2.
World J Clin Cases ; 11(32): 7881-7887, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38073691

ABSTRACT

BACKGROUND: Median arcuate ligament syndrome (MALS) is a rare disease caused by compression of the celiac trunk artery by the median arcuate ligament (MAL). It can cause symptoms of postprandial abdominal pain, weight loss, and nausea and vomiting. CASE SUMMARY: A 55-year-old woman was admitted due to abdominal pain, nausea and vomiting. On admission, the patient presented with epigastric pain that worsened after eating, without signs of peritoneal irritation. Computed tomography angiography of the upper abdomen showed compression of the proximal segment of the abdominal trunk, local luminal stenosis with angular "fishhook" changes, which changed significantly during forceful inspiration and expiration; gallbladder stones; and multiple cysts in the liver. Abdominal duplex ultrasonography showed that peak systolic velocity was 352 cm/s. After diagnosis of MALS was confirmed, an arch ligament release procedure was performed. MALS has no specific symptoms and can be misdiagnosed as other abdominal diseases. Awareness of MALS should be improved to avoid misdiagnosis. The commonly used treatment option is MAL release and resection of the peripheral ganglion of the celiac trunk artery. CONCLUSION: The diagnosis and treatment of MALS must be individualized, and MAL release is effective and provides immediate symptomatic relief.

3.
J Am Chem Soc ; 145(46): 25357-25364, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37948323

ABSTRACT

The demand for high-density storage is urgent in the current era of data explosion. Recently, several single-molecule (-atom) magnets and ferroelectrics have been reported to be promising candidates for high-density storage. As another promising candidate, single-molecule multiferroics are not only small in size but also possess ferroelectric and magnetic orderings, which can sometimes be strongly coupled and used as data storage to realize the combination of electric writing and magnetic reading. However, they have been rarely proposed and have never been experimentally reported. Here, by building Hamiltonian models, we propose a new model of single-molecule multiferroics in which electric dipoles and magnetic moments are parallel and can rotate with the rotation of the single molecule. Furthermore, by performing spin-lattice dynamics simulations, we reveal the conditions (e.g., large enough single-ion anisotropy and an appropriate electric field) under which the new single-molecule multiferroic can arise. Based on this model, as well as first-principles calculations, a realistic example of Co(NH3)4N@SWCNT is constructed and numerically confirmed to demonstrate the feasibility of the new single-molecule multiferroic model. Our work not only sheds light on the discovery of single-molecule multiferroics but also provides a new guideline to design multifunctional materials for ultimate memory devices.

4.
Sci Adv ; 9(47): eadi0138, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37992171

ABSTRACT

Thin-film ferroelectrics have been pursued for capacitive and nonvolatile memory devices. They rely on polarizations that are oriented in an out-of-plane direction to facilitate integration and addressability with complementary metal-oxide semiconductor architectures. The internal depolarization field, however, formed by surface charges can suppress the out-of-plane polarization in ultrathin ferroelectric films that could otherwise exhibit lower coercive fields and operate with lower power. Here, we unveil stabilization of a polar longitudinal optical (LO) mode in the n = 2 Ruddlesden-Popper family that produces out-of-plane ferroelectricity, persists under open-circuit boundary conditions, and is distinct from hyperferroelectricity. Our first-principles calculations show the stabilization of the LO mode is ubiquitous in chalcogenides and halides and relies on anharmonic trilinear mode coupling. We further show that the out-of-plane ferroelectricity can be predicted with a crystallographic tolerance factor, and we use these insights to design a room-temperature multiferroic with strong magnetoelectric coupling suitable for magneto-electric spin-orbit transistors.

5.
Phys Rev Lett ; 131(3): 036701, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37540870

ABSTRACT

A realistic first-principle-based spin Hamiltonian is constructed for the type-II multiferroic NiI_{2}, using a symmetry-adapted cluster expansion method. Besides single ion anisotropy and isotropic Heisenberg terms, this model further includes the Kitaev interaction and a biquadratic term, and can well reproduce striking features of the experimental helical ground state, that are, e.g., a proper screw state, canting of rotation plane, propagation direction, and period. Using this model to build a phase diagram, it is demonstrated that, (i) the in-plane propagation direction of ⟨11[over ¯]0⟩ is determined by the Kitaev interaction, instead of the long-believed exchange frustrations and (ii) the canting of rotation plane is also dominantly determined by Kitaev interaction, rather than interlayer couplings. Furthermore, additional Monte Carlo simulations reveal three equivalent domains and different topological defects. Since the ferroelectricity is induced by spins in type-II multiferroics, our work also implies that Kitaev interaction is closely related to the multiferroicity of NiI_{2}.

6.
J Phys Chem Lett ; 14(28): 6339-6348, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37417938

ABSTRACT

Graph neural networks (GNNs) have been shown to be extremely flexible and accurate in predicting the physical properties of molecules and crystals. However, traditional invariant GNNs are not compatible with directional properties, which currently limits their usage to the prediction of only invariant scalar properties. To address this issue, here we propose a general framework, i.e., an edge-based tensor prediction graph neural network, in which a tensor is expressed as the linear combination of the local spatial components projected on the edge directions of clusters with varying sizes. This tensor decomposition is rotationally equivariant and exactly satisfies the symmetry of the local structures. The accuracy and universality of our new framework are demonstrated by the successful prediction of various tensor properties from first to third order. The framework proposed in this work will enable GNNs to step into the broad field of prediction of directional properties.

7.
Micromachines (Basel) ; 14(6)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37374827

ABSTRACT

The diamagnetic levitation technique can be applied in non-destructive testing for identifying cracks and defects in magnetic materials. Pyrolytic graphite is a material that can be leveraged in micromachines due to its no-power diamagnetic levitation on a permanent magnet (PM) array. However, the damping force applied to pyrolytic graphite prevents it from maintaining continuous motion along the PM array. This study investigated the diamagnetic levitation process of pyrolytic graphite on a permanent magnet array from various aspects and drew several important conclusions. Firstly, the intersection points on the permanent magnet array had the lowest potential energy and validated the stable levitation of pyrolytic graphite on these points. Secondly, the force exerted on the pyrolytic graphite during in-plane motion was at the micronewton level. The magnitude of the in-plane force and the stable time of the pyrolytic graphite were related to the size ratio between it and the PM. During the fixed-axis rotation process, the friction coefficient and friction force decreased as the rotational speed decreased. Smaller-sized pyrolytic graphite can be used for magnetic detection, precise positioning and other microdevices. The diamagnetic levitation of pyrolytic graphite can also be used for detecting cracks and defects in magnetic materials. We hope this technique will be used in crack detection, magnetic detection and other micromachines.

8.
J Chem Phys ; 158(12): 124702, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37003760

ABSTRACT

The layered LiMO2 (M = Co, Ni, and Mn) materials are commonly used as the cathode materials in the lithium-ion battery due to the distinctive layer structure for lithium extraction and insertion. Although their electrochemical properties have been extensively studied, the structural and magnetic properties of LiNiO2 are still under considerable debate, and the magnetic properties of monoclinic LiMnO2 are seldom reported. In this work, a detailed study of LiNiO2, LiMnO2, and a half-doped material LiNi0.5Mn0.5O2 is performed via both first-principles calculations and Monte Carlo simulations based on the effective spin Hamiltonian model. Through considering different structures, it is verified that a structure with a zigzag-type pattern is the most stable one of LiNiO2. Moreover, in order to figure out the magnetic properties, the spin exchange interactions are calculated, and then magnetic ground states are predicted in these three systems. The results show that LiNiO2 forms a spiral order that is caused by the competition from both the short-range and long-range spin exchange interactions, whereas the magnetic ground state of LiMnO2 is collinearly antiferromagnetic due to its nearest and next-nearest neighbor antiferromagnetic spin exchange interactions. However, LiNi0.5Mn0.5O2 is collinearly ferrimagnetic because of the ferromagnetic nearest neighbor Ni-Ni and Mn-Mn exchange interactions. Our work demonstrates the competition between the different exchange interactions in these cathode materials, which may be relevant to the performance of the lithium-ion battery.

9.
Nano Lett ; 23(4): 1273-1279, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36729943

ABSTRACT

Regulating the magnetic properties of multiferroics lays the foundation for their prospective application in spintronic devices. Single-phase multiferroics, such as rare-earth ferrites, are promising candidates; however, they typically exhibit weak magnetism at room temperature (RT). Here, we significantly boosted the RT ferromagnetism of a representative ferrite, EuFeO3, by oxygen defect engineering. Polarized neutron reflectometry and magnetometry measurements reveal that saturation magnetization reaches 0.04 µB/Fe, which is approximately 5 times higher than its bulk phase. Combining the annular bright-field images with theoretical assessment, we unravel the underlying mechanism for magnetic enhancement, in which the decrease in Fe-O-Fe bond angles caused by oxygen vacancies (VO) strengthens magnetic interactions and tilts Fe spins. Furthermore, the internal relationship between magnetism and VO was established by illustrating how the magnetic structure and magnitude change with VO configuration and concentration. Our strategy for regulating magnetic properties can be applied to numerous functional oxide materials.

10.
Nat Comput Sci ; 3(4): 314-320, 2023 Apr.
Article in English | MEDLINE | ID: mdl-38177935

ABSTRACT

In addition to moiré superlattices, twisting can also generate moiré magnetic exchange interactions (MMEIs) in van der Waals magnets. However, owing to the extreme complexity and twist-angle-dependent sensitivity, all existing models fail to fully capture MMEIs and thus cannot provide an understanding of MMEI-induced physics. Here, we develop a microscopic moiré spin Hamiltonian that enables the effective description of MMEIs via a sliding-mapping approach in twisted magnets, as demonstrated in twisted bilayer CrI3. We show that the emergence of MMEIs can create a magnetic skyrmion bubble with non-conserved helicity, a 'moiré-type skyrmion bubble'. This represents a unique spin texture solely generated by MMEIs and ready to be detected under the current experimental conditions. Importantly, the size and population of skyrmion bubbles can be finely controlled by twist angle, a key step for skyrmion-based information storage. Furthermore, we reveal that MMEIs can be effectively manipulated by substrate-induced interfacial Dzyaloshinskii-Moriya interactions, modulating the twist-angle-dependent magnetic phase diagram, which solves outstanding disagreements between theories and experiments.


Subject(s)
Magnets , Physics , Physical Phenomena , Dissent and Disputes , Magnetic Phenomena
11.
Nat Commun ; 13(1): 6593, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36329034

ABSTRACT

Strongly correlated materials often exhibit an electronic phase separation (EPS) phenomena whose domain pattern is random in nature. The ability to control the spatial arrangement of the electronic phases at microscopic scales is highly desirable for tailoring their macroscopic properties and/or designing novel electronic devices. Here we report the formation of EPS nanoscale network in a mono-atomically stacked LaMnO3/CaMnO3/PrMnO3 superlattice grown on SrTiO3 (STO) (001) substrate, which is known to have an antiferromagnetic (AFM) insulating ground state. The EPS nano-network is a consequence of an internal strain relaxation triggered by the structural domain formation of the underlying STO substrate at low temperatures. The same nanoscale network pattern can be reproduced upon temperature cycling allowing us to employ different local imaging techniques to directly compare the magnetic and transport state of a single EPS domain. Our results confirm the one-to-one correspondence between ferromagnetic (AFM) to metallic (insulating) state in manganite. It also represents a significant step in a paradigm shift from passively characterizing EPS in strongly correlated systems to actively engaging in its manipulation.

12.
Front Immunol ; 13: 946266, 2022.
Article in English | MEDLINE | ID: mdl-36203575

ABSTRACT

Background: Nonobvious early symptoms are a prominent characteristic of pancreatic cancer, resulting in only 20% of patients having resectable tumors at the time of diagnosis. The optimal management of unresectable advanced pancreatic cancer (UAPC) remains an open research question. In this study, the tumors shrank significantly after PD-1 antibody combined with chemotherapy in two UAPC patients, and both have achieved R0 (pathologically negative margin) resection and survival to date. Case presentation: Case 1: A 53-year-old man was diagnosed with pancreatic adenocarcinoma (Stage III). He received six cycles of PD-1 antibody plus chemotherapy as the first-line treatment. The tumor was reduced from 11.8×8.8 cm to "0" (the pancreatic head was normal as shown by enhanced computed tomography, ECT) after preoperative neoadjuvant therapy (PNT) and the adverse effects were tolerable. The patient underwent radical surgery and achieved R0 resection. Case 2: A 43-year-old man diagnosed with pancreatic adenocarcinoma with liver metastasis (Stage IV) received three cycles of PD-1 antibody combined with chemotherapy. The tumor was reduced from 5.2×3.9 cm to 2.4×2.3 cm with no side effects. The patient also underwent radical surgery and achieved R0 resection. Conclusion: PD-1 antibody plus a chemotherapy regimen resulted in a surprising curative effect and safety in two patients with UAPC, which may portend an improvement in pancreatic carcinoma treatment. We may have a way for UAPC patients to obtain radical treatment and gain long-term survival. Two PD-L1 positive UAPC patients with microsatellite stability (MSS) enlighten us to have a more comprehensive understanding of the prediction of immunotherapy.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Adenocarcinoma/drug therapy , Adult , B7-H1 Antigen , Humans , Male , Microsatellite Repeats , Middle Aged , Pancreatic Neoplasms/drug therapy , Programmed Cell Death 1 Receptor , Pancreatic Neoplasms
13.
J Am Chem Soc ; 144(32): 14907-14914, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35926166

ABSTRACT

Organic-inorganic multiferroics are promising for the next generation of electronic devices. To date, dozens of organic-inorganic multiferroics have been reported; however, most of them show a magnetic Curie temperature much lower than room temperature, which drastically hampers their application. Here, by performing first-principles calculations and building effective model Hamiltonians, we reveal a molecular orbital-mediated magnetic coupling mechanism in two-dimensional Cr(pyz)2 (pyz = pyrazine) and the role that the valence state of the molecule plays in determining the magnetic coupling type between metal ions. Based on these, we demonstrate that a two-dimensional organic-inorganic room-temperature multiferroic, Cr(h-fpyz)2 (h-fpyz = half-fluoropyrazine), can be rationally designed by introducing ferroelectricity in Cr(pyz)2 while keeping the valence state of the molecule unchanged. Our work not only reveals the origin of magnetic coupling in 2D organic-inorganic systems but also provides a way to design room-temperature multiferroic materials rationally.

14.
Phys Rev Lett ; 128(19): 197601, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35622027

ABSTRACT

While nature provides a plethora of perovskite materials, only a few exhibit large ferroelectricity and possibly multiferroicity. The majority of perovskite materials have the nonpolar CaTiO_{3}(CTO) structure, limiting the scope of their applications. Based on the effective Hamiltonian model as well as first-principles calculations, we propose a general thin-film design method to stabilize the functional BiFeO_{3}(BFO)-type structure, which is a common metastable structure in widespread CTO-type perovskite oxides. It is found that the improper antiferroelectricity in CTO-type perovskite and ferroelectricity in BFO-type perovskite have distinct dependences on mechanical and electric boundary conditions, both of which involve oxygen octahedral rotation and tilt. The above difference can be used to stabilize the highly polar BFO-type structure in many CTO-type perovskite materials.

15.
Sci Adv ; 8(13): eabm8550, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35363530

ABSTRACT

The orthorhombic rare-earth manganates and ferrites multiferroics are promising candidates for the next generation multistate spintronic devices. However, their ferroelectric polarization is small, and transition temperature is far below room temperature (RT). The improvement of ferroelectricity remains challenging. Here, through the subtle strain and defect engineering, an RT colossal polarization of 4.14 µC/cm2 is achieved in SmFeO3-δ films, which is two orders of magnitude larger than its bulk and is also the largest one among the orthorhombic rare-earth manganite and ferrite family. Meanwhile, its RT magnetism is uniformly distributed in the film. Combining the integrated differential phase-contrast imaging and density functional theory calculations, we reveal the origin of this superior ferroelectricity in which the purposely introduced oxygen vacancies in the Fe-O layer distorts the FeO6 octahedral cage and drives the Fe ion away from its high-symmetry position. The present approach can be applied to improve ferroelectric properties for multiferroics.

16.
Adv Mater ; 34(12): e2107779, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35023226

ABSTRACT

Skyrmionic magnetic states are promising in advanced spintronics. This topic is experiencing recent progress in 2D magnets, with, for example, a near 300 K Curie temperature observed in Fe3 GeTe2 . However, despite previous studies reporting skyrmions in Fe3 GeTe2 , such a system remains elusive, since it has been reported to host either Néel-type or Bloch-type textures, while a net Dzyaloshinskii-Moriya interaction (DMI) cannot occur in this compound for symmetry reasons. It is thus desirable to develop an accurate model to deeply understand Fe3 GeTe2 . Here, a newly developed method adopting spin invariants is applied to build a first-principle-based Hamiltonian, which predicts colorful topological defects assembled from the unit of Bloch lines, and reveals the critical role of specific forms of fourth-order interactions in Fe3 GeTe2 . Rather than the DMI, it is the multiple fourth-order interactions, with symmetry and spin-orbit couplings considered, that stabilize both Néel-type and Bloch-type skyrmions, as well as antiskyrmions, without any preference for clockwise versus counterclockwise spin rotation. This study also demonstrates that spin invariants can be used as a general approach to study complex magnetic interactions.

17.
Nano Lett ; 21(7): 3170-3176, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33754732

ABSTRACT

Two-dimensional (2D) ferroelectric (FE) hybrid organic-inorganic perovskites (HOIPs) are promising for potential applications as miniaturized flexible ferroelectric/piezoelectric devices. Recently, several 2D HOIPs [e.g., Ruddlensden-Popper type HOIP BA2PbCl4 (BA = C6H5CH2NH3+)] were reported to possess room-temperature ferroelectricity. However, the underlying microscopic mechanisms for ferroelectricity in 2D HOIPs remain elusive. Here, by performing first-principles calculations and symmetry mode analysis, we demonstrate that there exists a cooperative coupling between A-site organic molecules and B-site inorganic Pb2+ ions that is essential to the ferroelectricity in 2D BA2PbCl4. The nonpolar ground state of the closely related compounds BA2PbBr4 and BA2PbI4 can also be explained in terms of the weakened cooperative coupling. We further predict that 2D BA2PbF4 displays in-plane ferroelectricity with a higher Curie temperature and larger electric polarization. Our work not only reveals the unusual FE mechanism in 2D HOIPs but also provides a solid theoretical basis for the rational design of 2D multifunctional materials.

18.
Molecules ; 26(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557181

ABSTRACT

The effective spin Hamiltonian method has drawn considerable attention for its power to explain and predict magnetic properties in various intriguing materials. In this review, we summarize different types of interactions between spins (hereafter, spin interactions, for short) that may be used in effective spin Hamiltonians as well as the various methods of computing the interaction parameters. A detailed discussion about the merits and possible pitfalls of each technique of computing interaction parameters is provided.


Subject(s)
Magnetic Phenomena , Magnets , Models, Theoretical
19.
J Phys Chem Lett ; 12(1): 576-584, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33382274

ABSTRACT

High-performance two-dimensional (2D) field effect transistors (FETs) have a broad application prospect in future electronic devices. The lack of an ideal material system, however, hinders the breakthrough of 2D FETs. Recently, phase engineering offers a promising solution, but it requires both semiconducting and metallic phases of materials. Here we suggest borophenes as ideal systems for 2D FETs by theoretically searching semiconducting phases. Using multiobjective differential optimization algorithms implemented in the IM2ODE package and the first-principles calculations, we have successfully identified 16 new semiconducting borophenes. Among them, the B12-1 borophene is the most stable semiconducting phase, whose total energy is lower than any other known semiconducting borophenes. By considering not only the band alignments but also the lattice matches between semiconducting and metallic borophenes, we then have theoretically proposed several device models of fully boron-sheet-based 2D FETs. Our work provides beneficial ideas and attempts for discovering novel borophene-based 2D FETs.

20.
Phys Rev Lett ; 125(6): 067602, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32845690

ABSTRACT

First-principles methods are employed to understand the existence of magnetic-domain-wall-induced electric polarization observed in rare-earth iron garnets. In contrast with previous beliefs, it is found that the occurrence of such polarization neither requires the local magnetic moments of the rare-earth ions nor noncollinear magnetism. It can rather be understood as originating from a magnetoelectric effect arising from ferromagnetic interactions between octahedral and tetrahedral Fe ions at the domain walls, and the mechanism behind is found to be a symmetric exchange-striction mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...