Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Genes Environ ; 43(1): 44, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34627392

ABSTRACT

OBJECTIVES: To explore the role of folate metabolism in 1,3-Butadiene (BD)'s genotoxicity, we conducted a match-up study in BD-exposed workers in China to analyze the associations between the polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and the chromosomal damage induced by BD exposure, and culture-based experiments in TK-6 cells to examine the global DNA methylation levels and chromosomal damage when exposed both to BD's genotoxic metabolite, 1,2:3,4-diepoxybutane (DEB), and MTHFR's direct catalytic product, 5-methyltetrahydrofolate (5-MTHF). METHODS: Cytokinesis block micronucleus assay (CBMN) was used to examine the chromosomal damage induced by BD or DEB. Poisson regression models were produced to quantify the relationship of chromosomal damage and genetic polymorphisms in the BD-exposed workers. Global DNA methylation levels in TK6 cells were examined using DNA Methylation Quantification Kit. RESULTS: We found that BD-exposed workers carrying MTHFR C677T CC (2.00 ± 2.00‰) (FR = 0.36, 95%CI: 0.20-0.67, P < 0.01) or MTHFR C677T CT (2.87 ± 1.98‰) (FR = 0.49, 95%CI: 0.32-0.77, P < 0.01) genotypes had significantly lower nuclear bud (NBUD) frequencies than those carrying genotype MTHFR 677 TT (5.33 ± 2.60‰), respectively. The results in TK6 cells showed that there was a significant increment in frequencies of micronucleus (MN), nucleoplasmic bridge (NPB) and nuclear bud (NBUD) with exposure to DEB at each 5-MTHF dose (ANOVA, P < 0.01). Additionally, there was a significant decrease in frequencies of MN, NPB and NBUD in DEB-exposed cultures with increasing concentration of 5-MTHF (ANOVA, P < 0.05). The levels of global DNA methylation were significantly decreased by DEB treatment in a dose-dependent manner within each 5-MTHF concentration in TK-6 cells (ANOVA, P < 0.01), and were significantly increased by 5-MTHF supplementation within each DEB concentration (ANOVA, P < 0.01). CONCLUSION: We reported that folate metabolism could modify the association between BD exposure and chromosomal damage, and such effect may be partially mediated by DNA hypomethylation, and 5-MTHF supplementation could rescue it.

2.
Ecotoxicol Environ Saf ; 212: 111990, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33524912

ABSTRACT

To investigate whether microcystin-LR (MC-LR) influences children's cognitive function and memory ability, we measured serum MC-LR and whole blood lead levels in 697 primary students, and collected their academic and neurobehavioral test scores. The median of serum MC-LR levels was 0.80 µg/L (the value below the limit of detection to 1.67 µg/L). The shapes of the associations of serum MC-LR levels (cut-point: 0.95 µg/L) with scores on academic achievements, digit symbol substitution test and long-term memory test were parabolic curves. Logistic regression analysis showed that MC-LR at concentrations of 0.80-0.95 µg/L was associated with the increased probability of higher achievements on academic achievements [odds ratio (OR) = 2.20, 95% confidence interval (CI): 1.28-3.79], and also with scores on digit symbol substitution test (OR = 1.73, 95% CI: 1.05-2.86), overall memory quotient (OR = 2.27, 95% CI: 1.21-4.26), long-term memory (OR = 1.85, 95% CI: 1.01-3.38) and short-term memory (OR = 2.13, 95% CI: 1.14-3.98) after adjustment for confounding factors. Antagonism of MC-LR and lead on long-term memory was observed (synergism index = 0.15, 95% CI: 0.03-0.74). In conclusion, serum MC-LR at concentrations of 0.80-0.95 µg/L was positively associated with higher scores on cognitive and neurobehavioral tests, and antagonism between MC-LR at concentrations of 0.80-1.67 µg/L and lead exposure was obviously observed on long-term memory in children. Concerning that MC-LR is a neurotoxin at high doses, our observation is interesting and need further investigation.


Subject(s)
Environmental Exposure/statistics & numerical data , Marine Toxins/blood , Microcystins/blood , Water Pollutants, Chemical/blood , Child , China , Cognition , Cross-Sectional Studies , Humans , Lead , Memory , Schools
3.
Biomed Res Int ; 2015: 234675, 2015.
Article in English | MEDLINE | ID: mdl-26339595

ABSTRACT

The aim of the study was to examine the association between polymorphisms of DNA repair genes and chromosomal damage of 1,3-butadiene- (BD-) exposed workers. The study was conducted in 45 pairs of occupationally exposed workers in a BD product workshop and matched control workers in an administrative office and a circulatory water workshop in China. Newly developed biomarkers (micronuclei, MNi; nucleoplasmic bridges, NPBs; nuclear buds, NBUDs) in the cytokinesis-blocked micronucleus (CBMN) cytome assay were adopted to detect chromosomal damage. PCR and PCR-restriction fragment length polymorphism (RFLP) are adopted to analyze polymorphisms of DNA repair genes, such as X-ray repair cross-complementing Group 1 (XRCC1), O6-methylguanine-DNA methyltransferase (MGMT), poly (adenosine diphosphate-ribose) polymerases (ADPRT), and apurinic/apyrimidinic endonucleases (APE1). The BD-exposed workers exhibited increased frequencies of MNi and NPBs when compared to subjects in the control group. The results also show that the BD-exposed workers carrying XRCC1 diplotypes TCGA-CCGG (4.25 ± 2.06 ‰) (FR = 2.10, 95% CI: 1.03-4.28) and TCGG-TCGA (5.80 ± 3.56 ‰) (FR = 2.75, 95% CI: 0.76-2.65) had statistically higher NBUD frequencies than those who carried diplotype TCGG-TCGG (1.89 ± 1.27 ‰). Our study suggests that polymorphisms of XRCC1 gene may influence chromosomal damage in BD-exposed workers.


Subject(s)
Butadienes/toxicity , DNA-Binding Proteins/genetics , Micronuclei, Chromosome-Defective/drug effects , Occupational Exposure , Butadienes/metabolism , China , Chromosome Aberrations/drug effects , DNA Damage/drug effects , DNA Modification Methylases/genetics , DNA Repair/genetics , DNA Repair Enzymes/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Humans , Micronucleus Tests , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/genetics , Polymorphism, Single Nucleotide , Tumor Suppressor Proteins/genetics , Urine/chemistry , X-ray Repair Cross Complementing Protein 1
4.
Mutagenesis ; 27(4): 415-21, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22156006

ABSTRACT

1, 3-Butadiene (BD) is a high-efficiency carcinogen in rodents and was classified as a human carcinogen in 2008 by the International Agency for Research on Cancer. However, its ability to induce genetic damage and the influence of metabolic polymorphisms to such damage in humans are both controversial claims. This study was conducted to investigate the relationships between exposure to BD, the polymorphisms of metabolic genes and the chromosomal damage in 45 pairs of occupationally exposed workers in a BD product workshop and matched control workers in an administrative office and circulatory water workshop in China. Exposure to BD was evaluated by personal sampling and stationary sampling. Different chromosomal damage endpoints in peripheral blood lymphocytes were determined using the cytokinesis-blocked micronucleus (CBMN) cytome assay; polymorphisms of metabolic genes [cytochrome P450 2E1 (CYP2E1), glutathione S-transferases (GST) and microsomal epoxide hydrolase (mEH)] in BD-exposed group were detected by polymerase chain reaction (PCR) or PCR-restriction fragment length polymorphism analysis. The results show that the average BD measurements of the exposed group were significantly higher than those for the control group (a personal sampling and stationary sampling, respectively). The BD-exposed workers exhibited increased frequencies of micronuclei (MNi) (8.00 ± 3.78‰ versus 5.62 ± 2.41‰) and nucleoplasmic bridges (NPBs) (2.58 ± 2.79‰ versus 1.13 ± 1.34‰) and a decreased nuclear division index (2.20 ± 0.14 versus 2.35 ± 0.27) when compared subjects in the control group. Meanwhile, BD-exposed workers carrying CYP2E1 c1c2/c2c2 or mEH intermediate (I)/high (H) group had a significantly higher NPB frequency than those carrying CYP2E1 c1c1 [frequency ratio (FR) = 2.60, 95% confidence interval (CI) 1.72-3.93; P < 0.0001) or the mEH low(S) group (FR = 2.06, 95% CI% 1.17-3.62; P < 0.05), respectively. Our study suggests that MNi and NPB frequency in CBMN cytome assay could be potential genotoxic biomarkers for BD exposure in humans. The polymorphism of CYP2E1 and mEH could also affect the chromosomal instability of BD workers.


Subject(s)
Butadienes/adverse effects , Cytochrome P-450 CYP2E1/genetics , Epoxide Hydrolases/genetics , Glutathione Transferase/genetics , Micronuclei, Chromosome-Defective/drug effects , Mutagens/adverse effects , Polymorphism, Genetic/genetics , Adult , Case-Control Studies , China , Chromosomal Instability , DNA Damage/drug effects , Female , Humans , Lymphocytes/metabolism , Male , Micronucleus Tests , Middle Aged , Occupational Exposure/adverse effects , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length
SELECTION OF CITATIONS
SEARCH DETAIL