Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 78: 102420, 2022 05.
Article in English | MEDLINE | ID: mdl-35334445

ABSTRACT

U-Net, as an encoder-decoder architecture with forward skip connections, has achieved promising results in various medical image analysis tasks. Many recent approaches have also extended U-Net with more complex building blocks, which typically increase the number of network parameters considerably. Such complexity makes the inference stage highly inefficient for clinical applications. Towards an effective yet economic segmentation network design, in this work, we propose backward skip connections that bring decoded features back to the encoder. Our design can be jointly adopted with forward skip connections in any encoder-decoder architecture forming a recurrence structure without introducing extra parameters. With the backward skip connections, we propose a U-Net based network family, namely Bi-directional O-shape networks, which set new benchmarks on multiple public medical imaging segmentation datasets. On the other hand, with the most plain architecture (BiO-Net), network computations inevitably increase along with the pre-set recurrence time. We have thus studied the deficiency bottleneck of such recurrent design and propose a novel two-phase Neural Architecture Search (NAS) algorithm, namely BiX-NAS, to search for the best multi-scale bi-directional skip connections. The ineffective skip connections are then discarded to reduce computational costs and speed up network inference. The finally searched BiX-Net yields the least network complexity and outperforms other state-of-the-art counterparts by large margins. We evaluate our methods on both 2D and 3D segmentation tasks in a total of six datasets. Extensive ablation studies have also been conducted to provide a comprehensive analysis for our proposed methods.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Algorithms , Humans , Image Processing, Computer-Assisted/methods
2.
IEEE Trans Med Imaging ; 41(8): 2180-2190, 2022 08.
Article in English | MEDLINE | ID: mdl-35263251

ABSTRACT

We present a novel weakly-supervised framework for classifying whole slide images (WSIs). WSIs, due to their gigapixel resolution, are commonly processed by patch-wise classification with patch-level labels. However, patch-level labels require precise annotations, which is expensive and usually unavailable on clinical data. With image-level labels only, patch-wise classification would be sub-optimal due to inconsistency between the patch appearance and image-level label. To address this issue, we posit that WSI analysis can be effectively conducted by integrating information at both high magnification (local) and low magnification (regional) levels. We auto-encode the visual signals in each patch into a latent embedding vector representing local information, and down-sample the raw WSI to hardware-acceptable thumbnails representing regional information. The WSI label is then predicted with a Dual-Stream Network (DSNet), which takes the transformed local patch embeddings and multi-scale thumbnail images as inputs and can be trained by the image-level label only. Experiments conducted on three large-scale public datasets demonstrate that our method outperforms all recent state-of-the-art weakly-supervised WSI classification methods.


Subject(s)
Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL