Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(42): 49739-49748, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37842970

ABSTRACT

Manipulating interface defects can minimize interfacial nonradiative recombination, thus increasing the stability and performance of perovskite solar cells (PSCs). Here, copper acetylacetonate [Cu(acac)2] as a passivator is used to treat the interface between Spiro-OMeTAD and perovskite. Owing to the strong chelation, the uncoordinated Pb2+ could react with -C═O/-COH functional groups, firmly anchoring acetylacetonate at this interface or the grain boundaries (GBs) of perovskite films to construct multiple ligand bridges, accompanied by the p-type copper iodide formation with copper substituting lead. Simultaneously, Cu+-Cu2+ pairs transfer electrons from Pb0 to I0, suppressing deep level defects of Pb0 and I0 near the perovskite interface. These can be beneficial to hole-transferring. Moreover, the Schiff base complexes with hydrophobicity, from the reaction of acetylacetonate with perovskite, can lead to tightly packed adjacent perovskite surfaces and self-seal the GBs of the perovskite, inhibiting moisture diffusion for long-term stability. Consequently, the Cu(acac)2-based PSC has achieved more than 24% champion efficiency while retaining ca. 92% of the initial power conversion efficiency after 1680 h of storage.

SELECTION OF CITATIONS
SEARCH DETAIL