Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Anal Methods ; 13(16): 1930-1938, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33913941

ABSTRACT

Extracellular vesicles (EVs) are nanoscale vesicles with a phospholipid bilayer. In the past few decades, EVs have gained more and more attention, which is attributed to their important roles in cell-to-cell communication. They are regarded as promising sources for disease biomarkers and have been explored for applications in early-stage diagnostics, monitoring of disease status, therapeutics and drug delivery. Nevertheless, EVs are a heterogeneous group of vesicles, and include two predominant classes: exosomes and microvesicles. The origins of these vesicles are diverse, which determines their differences in features and functions. To study the diversity of these EV subpopulations, it is essential to elucidate their compositions including proteins, metabolites, etc. Here, we presented a tandem extraction method to obtain metabolites and proteins from the same batch of EVs simultaneously, enabling a multi-omics differential analysis of exosomes and microvesicles in human plasma. As a result, we found 112 different proteins and 50 different metabolites between exosomes and microvesicles, demonstrating the diversity of these EV subpopulations. Furthermore, compared with human plasma, these two major classes of EVs showed distinct metabolome features, which indicated the necessity of analysing the metabolites derived from EVs to obtain a more comprehensive profile of the plasma metabolome, and the potential of EVs as important sources for biomarker screening.


Subject(s)
Cell-Derived Microparticles , Exosomes , Extracellular Vesicles , Humans , Metabolomics , Proteomics
2.
Anal Methods ; 13(13): 1591-1600, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33729255

ABSTRACT

Exosomes are small membrane-bound vesicles secreted by most cell types and play an important role in cell-to-cell communication. Increasing evidence shows that exosomal proteins in urine may be used as novel biomarkers for certain diseases. Purified urinary exosomes are necessary for downstream studies and application development. However, conventional methods for exosome isolation and enrichment are technically challenging and time-consuming. Poor specificity, low recovery and instrumental dependence also limit the use of these methods. It is particularly urgent to develop a rapid and efficient extraction method for basic research and clinical application. Particularly, urine is a dilute solution system with relatively low abundance of exosomes, due to which the isolation of urinary exosome requires more efficient technology. Here, we propose a new strategy for facile exosome isolation from human urine by utilizing the ultrafiltration technique and the specific interaction of TiO2 with the phosphate groups on the lipid bilayer of exosomes. Downstream characterization and proteomic analysis indicate that high-quality exosomes can be obtained from human urine by this ultrafiltration-TiO2 series method in 20 minutes, and 91.5% exosomes with an intact structure are captured from urine by this method. Moreover, 1874 protein groups have been identified through LC-MS. The results show that the protein identification of our method is 23% higher at least than those obtained by conventional strategies. We also identified 30 differential proteins by comparing the urinary exosomes from healthy male and female volunteers. These proteins are related to biological processes, such as lipid metabolism, fatty acid metabolism and nucleotide metabolism. Our analysis reveals that combining conventional ultrafiltration and TiO2-based isolation is ideal to overcome the inherent limitations of identification of exosome proteins derived from urine, and yield highly pure exosome components for downstream proteomic analysis.


Subject(s)
Exosomes , Nanoparticles , Female , Humans , Male , Proteomics , Titanium , Ultrafiltration
3.
Talanta ; 223(Pt 2): 121776, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33298282

ABSTRACT

Small extracellular vesicles (SEVs), are cell-derived, membrane-enclosed nanometer-sized vesicles that play vital roles in many biological processes. Recent years, more and more evidences proved that small EVs have close relationship with many diseases such as cancers and Alzheimer's disease. The use of phosphoproteins in SEVs as potential biomarkers is a promising new choice for early diagnosis and prognosis of cancer. However, current techniques for SEVs isolation still facing many challenges, such as highly instrument dependent, time consuming and insufficient purity. Furthermore, complex enrichment procedures and low microgram amounts of proteins available from clinical sources largely limit the throughput and the coveage depth of SEVs phosphoproteome mapping. Here, we synthesized Ti4+-modified magnetic graphene-oxide composites (GFST) and developed a "one-material" strategy for facile and efficient phosphoproteome enrichment and identification in SEVs from human serum. By taking advantage of chelation and electrostatic interactions between metal ions and phosphate groups, GFST shows excellent performance in both SEVs isolation and phosphopeptide enrichment. Close to 85% recovery is achieved within a few minutes by simple incubation with GFST and magnetic separation. Proteome profiling of the isolated serum SEVs without phosphopeptide enrichment results in 515 proteins, which is approximately one-fold more than those otained by ultracentrifugation or coprecipitation kits. Further application of GFST in one-material-based enrichment led to identification of 859 phosphosites in 530 phosphoproteins. Kinase-substrate correlation analysis reveals enriched substrates of CAMK in serum SEVs phosphoproteome. Therefore, we expect that the low instrument dependency and the limited sample requirement of this new strategy may facilitate clinical investigations in SEV-based transportation of abnormal kinases and substrates for drug target discovery and cancer monitoring.


Subject(s)
Extracellular Vesicles , Proteome , Biomarkers , Chromatography, Affinity , Humans , Phosphoproteins
4.
Se Pu ; 37(11): 1135-1141, 2019 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-31642265

ABSTRACT

With the increasing depth of proteomic identification, quantitative accuracy and increasing analytical speed, new challenges are being encountered in the development of proteomics methods. Traditional proteomics methods are time-consuming and have low sensitivity and poor accuracy; hence, they do not satisfy the new demands in proteomics research. Preparation of novel materials with specific functions via chemical and biochemical routes or by methods based on electricity, magnetism, heat, and photoirradiation is the key to overcome the limitations of traditional analytical techniques and promote active research in the field of proteomics. This paper reviews the recent advances in the application of functional materials in proteomics researches.


Subject(s)
Proteomics/methods , Proteomics/trends , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...