Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Natl Sci Rev ; 10(8): nwad179, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37554586

ABSTRACT

Activation of inflammasomes-immune system receptor sensor complexes that selectively activate inflammatory responses-has been associated with diverse human diseases, and many nanomedicine studies have reported that structurally and chemically diverse inorganic nanomaterials cause excessive inflammasome activation. Here, in stark contrast to reports of other inorganic nanomaterials, we find that nickel-cobalt alloy magnetic nanocrystals (NiCo NCs) actually inhibit activation of NLRP3, NLRC4 and AIM2 inflammasomes. We show that NiCo NCs disrupt the canonical inflammasome ASC speck formation process by downregulating the lncRNA Neat1, and experimentally confirm that the entry of NiCo NCs into cells is required for the observed inhibition of inflammasome activation. Furthermore, we find that NiCo NCs inhibit neutrophil recruitment in an acute peritonitis mouse model and relieve symptoms in a colitis mouse model, again by inhibiting inflammasome activation. Beyond demonstrating a highly surprising and apparently therapeutic impact for an inorganic nanomaterial on inflammatory responses, our work suggests that nickel- and cobalt-containing nanomaterials may offer an opportunity to design anti-inflammatory nanomedicines for the therapeutics of macrophage-mediated diseases.

2.
Biomater Sci ; 10(23): 6642-6655, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36214257

ABSTRACT

Intracellular delivery of macromolecules is a critical procedure for biological research and drug discovery, including proteins, peptides, vaccines, antibodies and genes. The penetration of macromolecule therapeutics through the cell membrane to intracellular targets is a prerequisite for their biological activity, but most delivery systems rely on the endocytic pathway to enter the cell and confront an inability to escape from the lysosome. A profound understanding of the cellular internalization of transporting carriers can (i) optimize the design of drug delivery systems, (ii) maintain the biological activity of biomolecular drugs, (iii) improve the efficiency of intracellular macromolecule transport and release, (iv) bring new opportunities for the discovery of macromolecule therapeutics and treatment of refractory disease. This article summarizes the uptake pathway of intracellular delivery vehicles for macromolecule drugs, hoping to provide ideas and references for macromolecule therapeutics delivery systems.


Subject(s)
Drug Delivery Systems , Peptides , Drug Delivery Systems/methods , Macromolecular Substances/chemistry , Peptides/chemistry , Biological Transport , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL