Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Front Pediatr ; 12: 1367710, 2024.
Article in English | MEDLINE | ID: mdl-38562138

ABSTRACT

Background: Asthma is a common chronic respiratory disease in children. Alongside pharmacological interventions, inspiratory muscle training (IMT) emerges as a complementary therapeutic approach for asthma management. However, the extent of its efficacy in pediatric populations remains uncertain when compared to its benefits in adults. This systematic review aims to evaluate the effectiveness of IMT with threshold loading in children with asthma. Methods: Randomized controlled trials (RCTs) evaluating the efficacy of inspiratory muscle training in pediatric asthma patients were identified through June 2023 across various literature databases, including PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), Cumulative Index to Nursing and Allied Health Literature (CINAL), Web of Science, China Knowledge Resource Integrated Database (CNKI), Wei Pu Database, Wan Fang Database, and Chinese Biomedical Database (CBM). These trials compared inspiratory muscle training against sham inspiratory muscle training and conventional care. Eligible studies were assessed in terms of risk of bias and quality of evidence. Where feasible, data were pooled and subjected to meta-analysis, with results reported as mean differences (MDs) and 95% confidence intervals (CIs). Results: Six trials involving 333 patients were included in the analysis. IMT demonstrated significant improvements in maximum inspiratory pressure (MIP) (MD 25.36, 95% CI 2.47-48.26, P = 0.03), maximum expiratory pressure (MEP) (MD 14.72, 95% CI 4.21-25.24, P = 0.006), forced vital capacity in percent predicted values [FVC(% pred)] (MD 3.90, 95% CI 1.86-5.93, P = 0.0002), forced expiratory volume in the first second in percent predicted values [FEV1(% pred)] (MD 4.96, 95% CI 2.60-7.32, P < 0.0001), ratio of forced expiratory volume in 1 s to forced vital capacity (FEV1/FVC) (MD 4.94, 95% CI 2.66-7.21, P < 0.0001), and asthma control test (ACT) (MD = 1.86, 95% CI: 0.96-2.75, P < 0.0001). Conclusions: Findings from randomized controlled trials indicate that inspiratory muscle training enhances respiratory muscle strength and pulmonary function in pediatric asthma patients. Systematic Review Registration: www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023449918, identifier: CRD42023449918.

2.
Front Psychiatry ; 15: 1309702, 2024.
Article in English | MEDLINE | ID: mdl-38544846

ABSTRACT

Introduction: Cancer-related distress can be described as a complex and unpleasant combination of psychological (such as cognitive, behavioral, and emotional), social, and spiritual challenges that may impact an individual's ability to effectively cope with the physical symptoms of cancer and its treatment. Existing literature has confirmed psychological distress (PD) as an important sequela of breast cancer diagnosis and treatment. However, the incidence and risk factors for PD in adult female patients with breast cancer remain unclear; therefore, focusing on the PD of female breast cancer patients is meaningful, as they are at highest risk of contracting breast cancer, and might differ in their coping styles from men. Objective: This review aimed to identify the incidence and risk factors for PD in adult woman patients with breast cancer, and to help guide targeted intervention to prevent distress. Method: PubMed, Embase, Cochrane Library, CINAL, PsycINFO, China Knowledge Resource Integrated Database, Wanfang Database, the Chinese Biomedical Database, and Weipu Database were searched for data regarding the incidence and risk factors of PD in adult women with breast cancer. Results: The prevalence of PD, assessed using the distress thermometer, ranged between 11.2%-86.7%, and a meta-analysis of 47 studies with 15,157 adult female breast cancer patients showed that the pooled prevalence was 52.0%. Further, this study identified 40 risk factors. However, owing to the inclusion of at least two studies for a certain risk factor, 10 risk factors were merged for the meta-analysis. Independent risk factors included higher education level, late-stage tumor, emotional concerns, no medical insurance, modified radical mastectomy, and history of depression; age and neuroticism were not associated with PD; and higher monthly income was revealed as a protective factor against it. Conclusion: The incidence of PD in female patients with breast cancer is high and it involves 10 risk factors, though some are controversial owing to insufficient evidence. Further research is needed to explore the underlying mechanisms of PD and develop risk factor-based holistic intervention programs to reduce its incidence. Systematic review registration: The protocol of this study has been registered in the database PROSPERO (registration ID: CRD42023433578).

3.
J Hazard Mater ; 466: 133505, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38280325

ABSTRACT

Multifunctional lakes are highly susceptible to anthropogenic influences, potentially introducing exogenous pollutants or nutrients into aquatic sediments. This, in turn, affects the mercury (Hg) methylation in the sediments. This study was conducted in the Changshou Lake, a representative multifunctional lake in southwestern China, with a specific focus on investigating the Hg variations, the potential of Hg methylation, and the influential factors affecting the methylation process within sediments across different functional areas. The results revealed significant variations in total Hg concentrations between the ecological culture area (area I), the ecological tourism area (area II), and the wetland protection area (area III), suggesting the possibility of exogenous Hg introduction associated with human activities. Furthermore, sediments from areas I and II displayed a greater potential for Hg methylation. This was ascribed to the enhanced diversity and relative abundance of Hg-methylating microorganisms, especially Geobacteraceae, induced by elevated levels of dissolved organic carbon in these two areas from human activities like historical cage culture. This study provides evidence that anthropogenic activities enhance the process of Hg methylation in the sediments of multifunctional lakes, highlighting the necessity of implementing comprehensive scientific water quality management practices to mitigate the negative impacts of human influences on these unique ecosystems.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Humans , Mercury/analysis , Lakes , Dissolved Organic Matter , Ecosystem , Anthropogenic Effects , Water Pollutants, Chemical/analysis , Geologic Sediments , Methylation , Environmental Monitoring
4.
Environ Sci Technol ; 57(40): 14994-15003, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37755700

ABSTRACT

Mercury sulfide nanoparticles (HgSNPs), which occur widely in oxic and anoxic environments, can be microbially converted to highly toxic methylmercury or volatile elemental mercury, but it remains challenging to assess their bioavailability. In this study, an Escherichia coli-based whole-cell fluorescent biosensor was developed to explore the bioavailability and microbial activation process of HgSNPs. Results show that HgSNPs (3.17 ± 0.96 nm) trigger a sharp increase in fluorescence intensity of the biosensor, with signal responses almost equal to that of ionic Hg (Hg(II)) within 10 h, indicating high bioavailability of HgSNP. The intracellular total Hg (THg) of cells exposed to HgSNPs (200 µg L-1) was 3.52-8.59-folds higher than that of cells exposed to Hg(II) (200 µg L-1), suggesting that intracellular HgSNPs were only partially dissolved. Speciation analysis using size-exclusion chromatography (SEC)-inductively coupled plasma mass spectrometry (ICP-MS) revealed that the bacterial filtrate was not responsible for HgSNP dissolution, suggesting that HgSNPs entered cells in nanoparticle form. Combined with fluorescence intensity and intracellular THg analysis, the intracellular HgSNP dissolution ratio was estimated at 22-29%. Overall, our findings highlight the rapid internalization and high intracellular dissolution ratio of HgSNPs by E. coli, and intracellular THg combined with biosensors could provide innovative tools to explore the microbial uptake and dissolution of HgSNPs.

5.
Environ Sci Pollut Res Int ; 30(48): 106502-106513, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37730981

ABSTRACT

Periphyton is a ubiquitous niche in aquatic environments and can be a significant source of dissolved organic matter (DOM) production and leaching, especially in such environment as the Everglades, a slow-water flow wetland in Florida, USA. We employed an array of methods, including compositional analysis, 3-dimensional excitation emission matrix (3-D EEM) fluorescence spectroscopy, and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, to perform quantitative and qualitative analyses on the DOM produced by periphyton and DOM in surrounding surface water and periphyton overlying water for comparison purposes. Higher dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) contents in periphyton pore water than surface water and periphyton overlying water indicated the remarkable contribution from periphyton-produced DOM. Higher total protein, carbohydrate, and thiol contents in periphyton pore water than in surface water and periphyton overlying water underscored the possibility of periphyton pore water DOM leached from periphyton. These results agreed with 3-D EEM and ATR-FTIR analyses that showed the prevalence of possible microbial source of periphyton pore water DOM as indicated by higher fluorescence index (FI) than surface water and periphyton overlying water. Similarly, the size-fractionated DOM from surface water demonstrated terrestrial sources, and periphyton pore water demonstrated microbial sources regardless of their differences in size based on their FI values. The types of periphyton affect the production and composition of DOM, as evidenced by higher total protein, carbohydrate, and chlorophyll-a (Chl-a) contents in floating mat on the water surface than in epiphyton attached to submerged phytoplankton, probably because the former is photo-synthetically more productive than the latter due to different light availability. This study provided fundamental information on periphyton DOM that is essential for further investigating its role in carbon cycle and its biogeochemistry.


Subject(s)
Periphyton , Water , Dissolved Organic Matter , Organic Chemicals/analysis , Spectrometry, Fluorescence/methods , Carbohydrates
6.
Front Cardiovasc Med ; 10: 1223619, 2023.
Article in English | MEDLINE | ID: mdl-37560113

ABSTRACT

Background: Pulmonary complications occur in a substantial proportion of patients who undergo coronary artery bypass grafting. Inspiratory muscle training (IMT), a simple, well-tolerated physical therapy, has been proposed to reduce the risk of complications, but its efficacy remains controversial. Method: Randomized controlled trials (RCTs) examining the influence of IMT on the risk of pulmonary complications after coronary artery bypass grafting were identified from PubMed, Embase, CENTRAL, CINAL, and Web of Science through March 2023. Data were meta-analyzed for the primary outcomes of pulmonary complications, defined as pneumonia, pleural effusion, and atelectasis; and in terms of the secondary outcomes of maximum inspiratory pressure, maximum expiratory pressure, length of hospitalization, 6 min walk test, and peak expiratory flow and other outcomes. Risk of bias and quality of evidence assessments were carried out using the RoB 2.0 and Grading of Recommendations Assessment, Development and Evaluation (GRADE) applied to primary outcomes of pulmonary complications. Results: Data from eight RCTs involving 755 patients were meta-analyzed. IMT was associated with a significantly lower risk of postoperative pneumonia [relative risk (RR) 0.39, 95% confidence interval (CI) 0.25-0.62, P < 0.0001] and atelectasis (RR 0.43, 95% CI 0.27-0.67, P = 0.0002), but not pleural effusion (RR 1.09, 95% CI 0.62-1.93, P = 0.76). IMT was associated with significantly better maximum inspiratory pressure (preoperative: mean difference (MD) 16.55 cmH2O, 95% CI 13.86-19.24, P < 0.00001; postoperative: mean difference (MD) 8.99 cmH2O, 95% CI 2.39-15.60, P = 0.008) and maximum expiratory pressure (MD 7.15 cmH2O, 95% CI: 1.52-12.79, P = 0.01), and with significantly shorter hospitalization (MD -1.71 days, 95% CI -2.56 to -0.87, P < 0.001). IMT did not significantly affect peak expiratory flow or distance traveled during the 6 min walk test. Conclusions: The available evidence from medium and high quality trials suggests that IMT can significantly decrease the risk of pneumonia and atelectasis after coronary artery bypass grafting while shortening hospitalization and improving the strength of respiratory muscles. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier: CRD42023415817.

7.
Front Endocrinol (Lausanne) ; 14: 1131430, 2023.
Article in English | MEDLINE | ID: mdl-36875469

ABSTRACT

Introduction: The purpose of this study was to evaluate the clinical characteristics of carotid atherosclerotic disease in patients with type 2 diabetes mellitus, investigate its risk factors, and develop and validate an easy-to-use nomogram. Methods: 1049 patients diagnosed with type 2 diabetes were enrolled and randomly assigned to the training and validation cohorts. Multivariate logistic regression analysis identified independent risk factors. A method combining least absolute shrinkage and selection operator with 10-fold cross-validation was used to screen for characteristic variables associated with carotid atherosclerosis. A nomogram was used to visually display the risk prediction model. Nomogram performance was evaluated using the C index, the area under the receiver operating characteristic curve, and calibration curves. Clinical utility was assessed by decision curve analysis. Results: Age, nonalcoholic fatty liver disease, and OGTT3H were independent risk factors associated with carotid atherosclerosis in patients with diabetes. Age, nonalcoholic fatty liver disease, smoke, HDL-C, and LDL-C were characteristic variables used to develop the nomogram. The area under the curve for the discriminative power of the nomogram was 0.763 for the training cohort and 0.717 for the validation cohort. The calibration curves showed that the predicted probability matched the actual likelihood. The results of the decision curve analysis indicated that the nomograms were clinically useful. Discussion: A new nomogram was developed and validated for assessing the incident risk of carotid atherosclerotic in patients with diabetes; this nomogram may act as a clinical tool to assist clinicians in making treatment recommendations.


Subject(s)
Carotid Artery Diseases , Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Humans , Nomograms , Risk Factors
8.
Chemosphere ; 324: 138291, 2023 May.
Article in English | MEDLINE | ID: mdl-36870614

ABSTRACT

Methylmercury (MeHg), derived from industrial processes and microbial methylation, is still a worldwide environmental concern. A rapid and efficient strategy is necessary for MeHg degradation in waste and environmental waters. Here, we provide a new method with ligand-enhanced Fenton-like reaction to rapidly degrade MeHg under neutral pH. Three common chelating ligands were selected (nitriloacetic acid (NTA), citrate, and ethylenediaminetetraacetic disodium (EDTA)) to promote the Fenton-like reaction and degradation of MeHg. Results showed that MeHg can be rapidly degraded, with the following efficiency sequence: EDTA > NTA > citrate. Scavenger addition demonstrated that hydroxyl radical (▪OH), superoxide radical (O2▪-), and ferryl (FeⅣO2+) were involved in MeHg degradation, and their relative contributions highly depended on ligand type. Degradation product and total Hg analysis suggested that Hg(Ⅱ) and Hg0 were generated with the demethylation of MeHg. Further, environmental factors, including initial pH, organic complexation (natural organic matter and cysteine), and inorganic ions (chloride and bicarbonate) on MeHg degradation, were investigated in NTA-enhanced system. Finally, rapid MeHg degradation was validated for MeHg-spiked waste and environmental waters. This study provided a simple and efficient strategy for MeHg remediation in contaminated waters, which is also helpful for understanding its degradation in the natural environment.


Subject(s)
Mercury , Methylmercury Compounds , Methylmercury Compounds/metabolism , Ligands , Edetic Acid , Mercury/metabolism , Hydrogen-Ion Concentration , Citrates
9.
Sci Total Environ ; 868: 161709, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36682565

ABSTRACT

Mercury (Hg) and its organic compounds, especially monomethylmercury (MeHg), cause major damage to the ecosystem and human health. In surface water or sediments, microorganisms play a crucial role in the methylation and demethylation of Hg. Given that Hg transformation processes are intracellular reactions, accurate assessment of the bioavailability of Hg(II)/MeHg in the environment, particularly for microorganisms, is of major importance. Compared with traditional analytical methods, bacterial whole-cell biosensors (BWCBs) provide a more accurate, convenient, and cost-effective strategy to assess the environmental risks of Hg(II)/MeHg. This Review summarizes recent progress in the application of BWCBs in the detection of bioavailable Hg(II)/MeHg, providing insight on current challenges and strategies. The principle and components of BWCBs for Hg(II)/MeHg bioavailability analysis are introduced. Furthermore, the impact of water chemical factors on the bioavailability of Hg is discussed as are future perspectives of BWCBs in bioavailable Hg analysis and optimization of BWCBs.


Subject(s)
Biosensing Techniques , Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Humans , Mercury/analysis , Methylmercury Compounds/analysis , Ecosystem , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Bacteria , Water/analysis
10.
ACS Nano ; 17(3): 1925-1934, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36688800

ABSTRACT

Mercury sulfide nanoparticles (HgSNP), as natural metal-containing nanoparticles, are the dominant Hg species in anoxic zones. Although the microbial Hg methylation of HgSNP has been previously reported, the importance of this process in Hg methylation has yet to be clarified due to the lack of knowledge on the internalization and transformation of HgSNP. Here, we investigated the internalization and transformation of HgSNP in microbial methylator Geobacter sulfurreducens PCA through total Hg analysis and different Hg species quantification in medium and cytoplasm. We found that the microbial uptake of HgSNP, via a passive diffusion pathway, was significantly higher than that of the Hg2+-dissolved organic matter (Hg2+-DOM) complex. Internalized HgSNP were dissolved to Hg2+ in cytoplasm with a maximal dissolution of 41%, suggesting a "Trojan horse" mechanism. The intracellular Hg2+ from HgSNP exposure at the initial stage (8 h) was higher than that in Hg2+-DOM group, which led to higher methylation of HgSNP. Furthermore, no differences in methylmercury (MeHg) production from HgSNP were observed between the hgcAB gene knockout (ΔhgcAB) and wild-type strains, suggesting that HgSNP methylation may occur through HgcAB-independent pathways. Considering the possibility of a broad range of hgcAB-lacking microbes serving as methylators for HgSNP and the ubiquity of HgSNP in anoxic environments, this study highlights the importance of HgSNP internalization and methylation in MeHg production and demonstrates the necessity of understanding the assimilation and transformation of nutrient and toxic metal nanoparticles in general.


Subject(s)
Mercury , Metal Nanoparticles , Methylmercury Compounds , Methylation , Biological Availability , Solubility , Methylmercury Compounds/metabolism , Sulfides
11.
Water Res ; 229: 119502, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36549184

ABSTRACT

Sediment is the primary hotspot for microbial production of toxic and bio-accumulative methylmercury (MeHg). Common remediation strategies such as sediment dredging and capping can be too expensive and cannot degrade MeHg efficiently. Here, we constructed an Escherichia coli strain overexpressing merB gene (DH5α J23106) and assessed the effectiveness of this recombinant strain in degradation of MeHg in culture medium and sediment. DH5α J23106 can efficiently degrade MeHg (with initial concentration from 0.01 to 50 ng/mL) to more than 81.6% in a culture medium under anoxic and oxic conditions. Enriched isotope addition (199HgCl2) revealed that this recombinant strain can degrade 78.6% of newly produced Me199Hg in actual sediment, however the biodegradation decreased to 36.3% for intrinsic MeHg. Degradation of spiked MeHg after aging in anoxic and oxic sediments further demonstrated DH5α J23106 can efficiently degrade newly produced MeHg and the degradation decreased with aging significantly, especially for oxic sediment. Eight sediments were further assessed for the biodegradation of aged MeHg by DH5α J23106 under oxic conditions, with degradation ratios ranging from 9.0% to 66.9%. When combined with (NH4)2S2O3 leaching, the degradation of MeHg increased by 15.8-38.8% in on-site and off-site modes through enhanced MeHg bioavailability in some of these sediments. Thus, this recombinant strain DH5α J23106 can degrade MeHg efficiently and have the potential for remediating bioavailable MeHg in contaminated sediments.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Biodegradation, Environmental , Geologic Sediments , Water Pollutants, Chemical/analysis , Mercury/analysis , Environmental Monitoring
12.
J Hazard Mater ; 438: 129560, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35999748

ABSTRACT

Methylmercury (MeHg) is mainly produced by anaerobic δ-proteobacteria such as sulfate-reducing bacteria (SRB). However, mercury bio-methylation has also been found to occur in the aerobic soil of the Three Gorges Reservoir (TGR). Using γ-proteobacterial TGR bacteria (TGRB) and δ-proteobacterial Desulfomicrobium escambiense strains, the efficiency of mercury methylation and demethylation was evaluated using an isotope tracer technique. Kinetics simulation showed that the bacterial Hg methylation rate (km) of TGRB3 was 4.36 × 10-9 pg·cell-1·h-1, which was significantly lower than that of D. escambiense (170.74 ×10-9 pg·cell-1·h-1) under anaerobic conditions. Under facultative and/or aerobic conditions, D. escambiense could not survive, while the km of TGRB3 were 0.35 × 10-9 and 0.29 × 10-9 pg·cell-1·h-1, respectively. Furthermore, the bacterial MeHg tolerance threshold of TGRB3 was 3.47 × 10-9 pg·cell-1, which was 98.6-fold lower than that of D. escambiense under anaerobic conditions. However, the MeHg tolerance threshold of TGRB3 remained at 0.50-0.52 × 10-9 pg·cell-1 under facultative and/or aerobic conditions. Notably, bacterial Hg methylation rates (km) were higher than the corresponding bacterial MeHg demethylation rates (kd1). These results establish the contribution of some aerobic and/or facultative anaerobic bacteria to net environmental MeHg production in terrestrial ecosystems and provide a novel understanding of the biogeochemical cycle of MeHg. SYNOPSIS: Hg methylation of facultative and/or aerobic bacteria may contribute to the net production of environmental methylmercury in terrestrial ecosystems.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Bacteria , Ecosystem , Environmental Monitoring , Mercury/analysis , Methylation
13.
J Environ Sci (China) ; 119: 139-151, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35934459

ABSTRACT

The water-level fluctuation zone (WLFZ) has been considered as a hotspot for mercury (Hg) methylation. Flooding-tolerant herbs are gradually acclimated to this water-land ecotone, tending to form substantial root systems for improving erosion resistance. Accompanying rhizosphere microzone plays crucial but unclear roles in methylmercury (MeHg) formation in the WLFZ. Thus, we conducted this study in the WLFZ of the Three Gorges Reservoir, to explore effects of the rhizosphere of a dominant flooding-tolerant herb (bermudagrass) on MeHg production. The elevated Hg and MeHg in rhizosphere soils suggest that the rhizosphere environment provides favorable conditions for Hg accumulation and methylation. The increased bioavailable Hg and microbial activity in the rhizosphere probably serve as important factors driving MeHg formation in the presence of bermudagrass. Simultaneously, the rhizosphere environments changed the richness, diversity, and distribution of hgcA-containing microorganisms. Here, a typical iron-reducing bacterium (Geobacteraceae) has been screened, however, the majority of hgcA genes detected in rhizosphere, near-, and non-rhizosphere soils of the WLFZ were unclassified. Collectively, these results provide new insights into the elevated MeHg production as related to microbial processes in the rhizosphere of perennial herbs in the WLFZ, with general implications for Hg cycling in other ecosystems with water-level fluctuations.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , China , Ecosystem , Environmental Monitoring , Mercury/analysis , Methylation , Soil , Water/analysis , Water Pollutants, Chemical/analysis
14.
Environ Sci Technol ; 56(10): 6754-6764, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35502862

ABSTRACT

Particle-bound mercury (HgP), ubiquitously present in aquatic environments, can be methylated into highly toxic methylmercury, but it remains challenging to assess its bioavailability. In this study, we developed anEscherichia coli-based whole-cell biosensor to probe the microbial uptake of inorganic Hg(II) and assess the bioavailability of HgP sorbed on natural and model particles. This biosensor can quantitatively distinguish the contribution of dissolved Hg(II) and HgP to intracellular Hg. Results showed that the microbial uptake of HgP was ubiquitous in the environment, as evidenced by the bioavailability of sorbed-Hg(II) onto particulate matter and model particles (Fe2O3, Fe3O4, Al2O3, and SiO2). In both oxic and anoxic environments, HgP was an important Hg(II) source for microbial uptake, with enhanced bioavailability under anoxic conditions. The composition of particles significantly affected the microbial uptake of HgP, with higher bioavailability being observed for Fe2O3 and lower for Al2O3 particles. The bioavailability of HgP varied also with the size of particles. In addition, coating with humic substances and model organic compound (cysteine) on Fe2O3 particles decreased the bioavailability of HgP. Overall, our findings highlight the role of HgP in Hg biogeochemical cycling and shed light on the enhanced Hg-methylation in settling particles and sediments in aquatic environments.


Subject(s)
Biosensing Techniques , Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Humic Substances , Mercury/chemistry , Silicon Dioxide , Water Pollutants, Chemical/analysis
15.
Environ Sci Pollut Res Int ; 29(40): 60459-60471, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35426017

ABSTRACT

Periphyton contains extracellular polymeric substances (EPS), yet little is known about how periphyton EPS affect the speciation and mobility of mercury (Hg(II)) in aquatic systems. This study extracted and characterized EPS from periphyton in Florida Everglades, and explored its role in Hg(II) binding and speciation using multiple approaches. Results from Fourier transform infrared spectroscopy (FTIR) revealed that colloidal and capsular EPS were primarily comprised of proteins, polysaccharides, phospholipids, and nucleic acids. Ultrafiltration experiments demonstrated that 77 ± 7.7% and 65 ± 5.5% of Hg(II) in EPS solution could be transformed into colloidal and capsular EPS-bound forms. Three-dimensional excitation emission fluorescence spectra (3D-EEMs) showed that the binding constants (Kb) between colloidal/capsular EPS and Hg(II) were 3.47×103 and 2.62×103 L·mol-1. Together with 3D-EEMs and FTIR, it was found that the protein-like and polysaccharide-like substances in EPS contributed to Hg(II) binding. For colloidal EPS, COO- was the most preferred Hg(II) binding group, while C-N, C-O-C, and C-OH were the most preferred ones in capsular EPS. Using the stannous-reducible Hg approach, it was found that EPS significantly decreased the reactive Hg(II). Overall, this study demonstrated that EPS from periphyton are important organic ligands for Hg(II) complexation, which may further affect the migration and reactivity of Hg(II) in aquatic environment. These observations could improve our understanding of Hg(II) methylation and accumulation within periphyton in aquatic systems.


Subject(s)
Mercury , Periphyton , Extracellular Polymeric Substance Matrix , Florida , Mercury/chemistry , Spectroscopy, Fourier Transform Infrared
16.
J Hazard Mater ; 424(Pt B): 127399, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34638072

ABSTRACT

Methylmercury (MeHg), derived via inorganic mercury (Hg(II)) methylation by anaerobic microorganisms, is a neurotoxic contaminant causing concern worldwide. Establishing how to reduce Hg(II) methylation and MeHg bioavailability is essential for effective control of Hg pollution. Iron sulfide nanoparticles (FeSNP) is a promising passivator for Hg(II) methylation. However, its effect on the fate of MeHg in aquatic systems remains poorly understood. This study investigated the effect of FeSNP on Hg(II) bioavailability, MeHg production and bioavailability in aquatic environments. Results demonstrated that FeSNP rapidly sorbed Hg(II) and MeHg, with sorption affected by pH, chloride ion and dissolved organic matter. Hg-specific biosensor analysis showed that Hg(II) sorbed onto FeSNP significantly reduced its bioavailability to microorganisms. Double stable isotope (199Hg(II) and Me201Hg) addition revealed that FeSNP significantly inhibited MeHg production in anaerobic sediments. Furthermore, synthetic gut juice extraction suggested that FeSNP decrease concentrations of bioavailable MeHg and Hg(II), reducing their integration into food webs. However, the sorbed MeHg and Hg(II) in sediments can be released after FeSNP oxidation, potentially enhancing the risk of exposure to aquatic organisms. Overall, these findings increase our understanding of Hg transformation and exposure risks in aquatic systems, providing valuable information for the development of in situ Hg remediation systems.


Subject(s)
Mercury , Methylmercury Compounds , Nanoparticles , Water Pollutants, Chemical , Anaerobiosis , Biological Availability , Dissolved Organic Matter , Ferrous Compounds , Geologic Sediments , Mercury/analysis , Water Pollutants, Chemical/analysis
17.
Ecotoxicol Environ Saf ; 207: 111538, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33254400

ABSTRACT

Limited information is available about the bio-methylation of inorganic mercury (iHg) under aerobic conditions. In this study, two γ-proteobacteria strains (P. fluorescens TGR-B2 and P. putida TGR-B4) were obtained from the soil of The Three Gorges Reservoir (TGR), demonstrating effective aerobic transformation capacities of iHg into methylmercury (MeHg). Based on periodical changes in soil oxygen content of the TGR, a culture system was established, in which 300 ng Hg (II) L-1 and O2 were set at 7%, 14%, and 21%, respectively. Results indicated that the two strains differed significantly in bacterial growth rate and MeHg production. The kinetic model of MeHg showed typical characteristics of a "two-staged" process: The first stage was dominated by bio-methylation, which was shown by increasing of net MeHg content. Moreover, the second stage was dominated by bio-demethylation, which decreased net MeHg content. Thus, we hypothesized that the mechanism of aerobic bacterial iHg bio-methylation: (1) should inefficiency compared to anaerobic bacteria i.e.SRB, which were regulated by hgcA/B gene clusters, (2) might be regarded as a passive stress response and depended on the bacterial iHg intoxication threshold and MeHg tolerance threshold.


Subject(s)
Bacteria, Aerobic/metabolism , Mercury/metabolism , Soil Pollutants/metabolism , Environmental Monitoring , Mercury/analysis , Methylation , Methylmercury Compounds , Oxygen , Soil , Soil Pollutants/analysis
18.
J Hazard Mater ; 410: 124551, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33223320

ABSTRACT

Periphyton is ubiquitous in Florida Everglades and has a profound effect on mercury (Hg) cycling. Enhanced methylmercury (MeHg) production in periphyton has been well documented, but the re-distribution of MeHg from periphyton remains unknown. In this study, periphyton, sediments, surface water, periphyton overlying water, and periphyton porewater were collected from Everglades for analyzing the distribution of MeHg and total Hg (THg). Results showed that there were no significant differences in THg and MeHg in different types of periphyton, but they all displayed higher MeHg levels than sediments. MeHg distribution coefficients (logkd) in periphyton were lower than in sediments, suggesting that periphyton MeHg could be more labile entering aquatic cycling and bioaccumulation. In water, the more the distance of water samples taken from periphyton, the lower the MeHg and dissolved organic carbon concentrations were detected. In extracellular polymeric substances of periphyton, MeHg in colloidal fractions was significantly higher than that in capsular fractions. It was estimated that approximately 10% (or 1.35 kg) of periphyton MeHg were passed on to mosquitofish entering the food web during wet season, contributing 73% of total Hg stocked in mosquitofish. These results revealed the importance of periphyton on water MeHg distribution and MeHg bioaccumulation in Everglades.


Subject(s)
Mercury , Methylmercury Compounds , Periphyton , Water Pollutants, Chemical , Animals , Environmental Monitoring , Florida , Food Chain , Mercury/analysis , Water , Water Pollutants, Chemical/analysis
19.
J Hazard Mater ; 381: 120962, 2020 01 05.
Article in English | MEDLINE | ID: mdl-31442691

ABSTRACT

Water-level-fluctuating zone (WLFZ) is a prevalent water-land ecotone favorable for mercury (Hg) methylation. The succession of flooding tolerance plants in WLFZ gradually changes the landscape, and also brings a new question worth understanding whether these plants would enhance methylmercury (MeHg) production in WLFZ and increase risks to the aquatic environment. Given bermudagrass (Cynodon dactylon (L). Pers) as the dominant perennial herb with high flooding-tolerance in WLFZ of the Three Gorges Reservoir (TGR), we conducted a comprehensive study to investigate its roles in the production and migration of MeHg in WLFZ by field observations and stable isotope tracer experiments. Results showed that both elevated MeHg levels and Hg methylation rates appeared in soil/sediment in bermudagrass growing area, implying that the growth of bermudagrass could significantly enhance MeHg production. However, MeHg migration from sediment to water was restricted during the flooding period of the TGR, as obviously higher partitioning coefficients of MeHg between the sediment and porewater (p <  0.05) and lower MeHg release fluxes were observed in vegetated area, indicating that the presence of bermudagrass instead probably decreased the water MeHg level. Whereas, it is noteworthy that elevated MeHg in soil/sediment induced by the bermudagrass could pose potential risks to the benthos and further to the TGR food chain.


Subject(s)
Cynodon/metabolism , Mercury/metabolism , Methylmercury Compounds , Water Pollutants, Chemical , China , Geologic Sediments/analysis , Methylation , Methylmercury Compounds/analysis , Methylmercury Compounds/metabolism , Soil/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Water Supply
20.
Curr Microbiol ; 77(4): 522-527, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31004191

ABSTRACT

Mercury (Hg) methylation is mainly a microbial process mediated by anaerobes. The continued study of Pseudomonas putida (P. putida) strain TGRB4 genome was inspired by the fact that it can transform Hg into the highly toxic methylmercury (MeHg) under aerobic conditions. P. putida strain TGRB4 is a Gram-negative rod-shaped Gamma-proteobacterium (γ-proteobacterium), isolated from the soil in a typical water level fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR), which suffered from seasonally water level alternations every year. Draft genome assembly of P. putida strain TGRB4 is presented here, which was sequenced using Illumina Hiseq and PacBio single-molecule real-time (SMRT) platforms. Its genome harbors a total of 5504 genes and a G + C content of 62.6%. We further identified the enzymes related to Hg methylation, and found two well-known methyltransferase, including 5-methyl-tetrahydrofolate (5-methyl-THF) and S-adenosylmethionine (AdoMet), were annotated in the genome of P. putida strain TGRB4. This genome information could be treated as a research material to further study the Hg methylation mechanisms under aerobic environment.


Subject(s)
Genome, Bacterial , Methylmercury Compounds/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Soil Microbiology , Aerobiosis , Base Composition , China , Mercury/metabolism , Methylation , Pseudomonas putida/isolation & purification , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...