Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(24): 36838-36848, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379768

ABSTRACT

Quantum networks are essential for realising distributed quantum computation and quantum communication. Entangled photons are a key resource, with applications such as quantum key distribution, quantum relays, and quantum repeaters. All components integrated in a quantum network must be synchronised and therefore comply with a certain clock frequency. In quantum key distribution, the most mature technology, clock rates have reached and exceeded 1GHz. Here we show the first electrically pulsed sub-Poissonian entangled photon source compatible with existing fiber networks operating at this clock rate. The entangled LED is based on InAs/InP quantum dots emitting in the main telecom window, with a multi-photon probability of less than 10% per emission cycle and a maximum entanglement fidelity of 89%. We use this device to demonstrate GHz clocked distribution of entangled qubits over an installed fiber network between two points 4.6km apart.

2.
Sci Rep ; 9(1): 4111, 2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30858479

ABSTRACT

Entangled light sources are considered as core technology for multiple quantum network architectures. Of particular interest are sources that are based on a single quantum system as these offer intrinsic security due to the sub-Poissonian nature of the photon emission process. This is important for applications in quantum communication where multi-pair emission generally compromises performance. A large variety of sources has been developed, but the generated photons remained far from being utilized in established standard fiber networks, mainly due to lack of compatibility with telecommunication wavelengths. In this regard, single semiconductor quantum dots are highly promising photon pair sources as they can be engineered for direct emission at telecom wavelengths. In this work we demonstrate the feasibility of this approach. We report a week-long transmission of polarization-entangled photons from a single InAs/GaAs quantum dot over a metropolitan network fiber. The photons are in the telecommunication O-band, favored for fiber optical communication. We employ a polarization stabilization system overcoming changes of birefringence introduced by 18.23 km of installed fiber. Stable transmission of polarization-encoded entanglement with a high fidelity of 91% is achieved, facilitating the operation of sub-Poissonian quantum light sources over existing fiber networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...