Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9992, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693305

ABSTRACT

A two-dimensional unsteady seepage model for coal using a finite element program is developed, and the temporal variations of key factors such as water pressure and hydraulic gradient are analyzed in this paper. Additionally, the triaxial rock mechanical experiment and utilized pneumatic fracturing equipment on raw coal samples to investigate both hydraulic and pneumatic fracturing processes are conducted. Through these experiments, the relationship between pressure and crack formation and expansion are examined. The analysis reveals that the pore pressure gradient at the coal inlet reaches its peak during rapid surges in water pressure but diminishes over time. Conversely, the pore pressure gradient at the outlet side exhibits a gradual increase. Hydraulic fracturing is most likely to occur at the water inlet during sudden increases in water pressure. Besides, as the permeability of coal decreases, the duration for seepage stabilization prolongs due to the intensified pore pressure gradient resulting from sudden increases in water pressure. Moreover, an extended period of high hydraulic gradient further increases the risk of hydraulic fracturing. The experimental findings indicate that coal samples initially experience tensile failure influenced by water and air pressure. Subsequently, mode I cracks form under pressure, propagating along the fracture surface and becoming visible. The main types of failure observed in hydraulic and pneumatic fracturing are diametrical tensile failure, and the development of fractures can be categorized into three distinct stages, which contains the initial stage characterized by slight volume changes while water pressure increases, the expansion stage when pressure reaches the failure strength, and the crack closure stage marked by little or even decreasing volume changes during pressure unloading. The acoustic emission signal accurately corresponds to these three stages.

2.
Sci Rep ; 14(1): 5081, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429309

ABSTRACT

Based on the 7618 working face in Yaoqiao coal mine of Datun mining area, the activation mechanism of water-rich faults and the development characteristics of water-conducting fractures in overlying strata under the influence of faults are studied by theoretical analysis, numerical simulation and field measurement in this paper. The research results show that Anderson model and Mohr-Coulomb strength criterion are combined to establish the fault failure mechanical model, and the fault activation criterion under the influence of mining is obtained. FLAC3D numerical simulation results show that with the advance of the working face, the fault begins to be affected by the mining effect of the working face at the distance of 20 ~ 30 m from the fault. Meanwhile, with the advance of the working face, the overburden shear failure range also expands, and the fault fracture gradually expands from top to bottom. The failure zone of the working face roof is connected with the fault fracture zone. Then the fault is "activated" and causes the fault to become a water gushing channel, and finally the water gushing disaster occurs. Through numerical simulation and comparative analysis, the development height of water-conducting fracture is 73.2 m in the absence of fault, and 73.7 m in the presence of fault, indicating that the fault has little influence on the maximum development height of water-conducting fracture. The actual development height of the water-conducting fracture zone in the 7618 working face is 73.97 m and the fracture production ratio is 13.7. The research results can provide theoretical reference for the safe mining of similar working faces across faults.

SELECTION OF CITATIONS
SEARCH DETAIL
...