Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Natl Sci Rev ; 8(3): nwaa289, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34691600

ABSTRACT

Surface and interface play critical roles in energy storage devices, calling for operando characterization techniques to probe the electrified surfaces/interfaces. In this work, surface science methodology, including electron spectroscopy and scanning probe microscopy, has been successfully applied to visualize electrochemical processes at operating electrode surfaces in an Al/graphite model battery. Intercalation of anions together with cations is directly observed in the surface region of a graphite electrode with tens of nanometers thickness, the concentration of which is one order higher than that in bulk. An intercalation pseudocapacitance mechanism and a double specific capacity in the electrode surface region are expected based on the super-dense intercalants and anion/cation co-intercalation, which are in sharp contrast to the battery-like mechanism in the electrode bulk. The distinct electrochemical mechanism at the electrode surface is verified by performance tests of real battery devices, showing that a surface-dominant, nanometer-thick graphite cathode outperforms a bulk-dominant, micrometer-thick graphite cathode. Our findings highlight the important surface effect of working electrodes in charge storage systems.

2.
J Am Chem Soc ; 140(26): 8198-8205, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29893575

ABSTRACT

Scalable production of high-quality heteroatom-modified graphene is critical for microscale supercapacitors but remains a great challenge. Herein, we demonstrate a scalable, single-step electrochemical exfoliation of graphite into highly solution-processable fluorine-modified graphene (FG), achieved in an aqueous fluorine-containing neutral electrolyte, for flexible and high-energy-density ionogel-based microsupercapacitors (FG-MSCs). The electrochemically exfoliated FG nanosheets are characterized by atomic thinness, large lateral size (up to 12 µm), a high yield of >70% with ≤3 layers, and a fluorine doping of 3 at%, allowing for large-scale production of FG-MSCs. Our ionogel-based FG-MSCs deliver high energy density of 56 mWh cm-3, by far outperforming the most reported MSCs. Furthermore, the all-solid-state microdevices offer exceptional cyclability with ∼93% after 5000 cycles, robust mechanical flexibility with 100% of capacitance retention bended at 180°, and outstanding serial and parallel integration without the requirement of metal-based interconnects for high-voltage and high-capacitance output. Therefore, these FG-MSCs represent remarkable potential for electronics.

3.
Phys Chem Chem Phys ; 18(16): 10918-23, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27040464

ABSTRACT

Heterostructure materials with a strictly periodic arrangement in hundreds of microns based on tunneling modulation are ideal candidates for micro-nanodevice applications. In this paper, we propose a Cu2O/SnO2 periodical heterostructure film, which is prepared by electrochemical deposition in a quasi-2D ultra-thin liquid layer. The surface morphology and the component of the film were analyzed by scanning electron microscopy (SEM), scanning probe microscopy (SPM) and transmission electron microscopy (TEM). The influences of frequency and amplitude of periodic deposition potential on the morphology and regular distribution of the interface were studied. The photoresponsivity of this material was researched, and the response behaviors for different illumination conditions were recorded carefully. Based on the tunneling modulation mechanism, it exhibits reasonable photoresponsivity to UV light.

4.
Nanoscale ; 8(22): 11426-31, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-26880393

ABSTRACT

Recent scientific advances on organic-inorganic hybrid perovskites are mainly focused on the improvement of power conversion efficiency. So far, how compression tunes their electronic and structural properties remains less understood. By combining in situ photocurrent, impedance spectroscopy, and X-ray diffraction (XRD) measurements, we have studied the electrical transport and structural properties of compressed CH3NH3PbI3 (MAPbI3) nanorods. The visible light response of MAPbI3 remains robust below 3 GPa while it is suppressed when it becomes amorphous. Pressure-induced electrical transport properties of MAPbI3 including resistance, relaxation frequency, and relative permittivity have been investigated under pressure up to 8.5 GPa by in situ impedance spectroscopy measurements. These results indicate that the discontinuous changes of these physical parameters occur around the structural phase transition pressure. The XRD studies of MAPbI3 under high pressure up to 20.9 GPa show that a phase transformation below 0.7 GPa, could be attributed to the tilting and distortion of PbI6 octahedra. And pressure-induced amorphization is reversible at a low density amorphous state but irreversible at a relatively higher density state. Furthermore, the MAPbI3 nanorods crush into nanopieces around 0.9 GPa which helps us to explain why the mixed phase of tetragonal and orthorhombic was observed at 0.5 GPa. The pressure modulated changes of electrical transport and visible light response properties open up a new approach for exploring CH3NH3PbI3-based photo-electronic applications.

5.
Phys Chem Chem Phys ; 18(1): 325-30, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26611140

ABSTRACT

ZnO nanosheet (NS) arrays have been synthesized by a facile ultrathin liquid layer electrodeposition method. The ion concentration and electrode potential play important roles in the formation of ZnO NS arrays. Studies on the structural information indicate that the NSs are exposed with (100) facets. The results of Raman and PL spectra indicate that there existed a large amount of oxygen vacancies in the NSs. The gas sensing performances of the ZnO NS arrays are investigated: the ZnO NS arrays exhibited high gas selectivity and quick response/recovery for detecting NO2 at a low working temperature. High binding energies between NO2 molecules and exposed ZnO(100) facets lead to large surface reconstructions, which is responsible for the intrinsic NO2 sensing properties. In addition, the highly exposed surface and a large amount of oxygen vacancies existing in the NSs also make a great contribution to the gas sensing performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...