Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 332: 118324, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38754643

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Belamcanda chinensis (L.) Redouté is widely distributed in East Asia, such as China, Russia and North Korea. Belamcandae Rhizoma is the sun-dried rhizome of B. chinensis and has a long history of traditional medicinal use. It was first recorded in the Shennong's Herbal Classic, and has the effects of clearing heat and detoxifying, eliminating phlegm and benefiting the pharynx. AIM OF THE STUDY: To systematically study the source of Belamcandae Rhizoma, summarize the evolution of its medicinal properties, efficacy and the application history of its prescriptions, summarize its biological activity, phytochemistry, synthetic metabolic pathway and toxicology, and screen the Quality-Markers of Belamcandae Rhizoma according to the screening principle of traditional Chinese medicine Quality-Markers. MATERIALS AND METHODS: All information available on Belamcandae Rhizoma was collected using electronic search engines, such as Pubmed, Web of Science, CNKI, WFO (www.worldfloraonline.org), MPNS (https://mpsn.kew.org), Changchun University of Traditional Chinese Medicine Library collections, Chinese Medical Classics. RESULTS: The source of Belamcandae Rhizoma is B. chinensis of Iridaceae. It has a long history of application in China. It has the effects of clearing heat and detoxifying, eliminating phlegm and promoting pharynx. Modern pharmacological studies have shown that it has anti-inflammatory, anti-oxidation, anti-tumor and other physiological activities, and is safe and non-toxic at normal application doses. At present, tectoridin, iridin, tectorigenin, irigenin and irisflorentin are identified as the Quality-Markers of Belamcandae Rhizoma. CONCLUSIONS: As a traditional Chinese medicine, Belamcandae Rhizoma has a long history of application, and multifaceted studies have demonstrated that Belamcandae Rhizoma is a promising Chinese medicine with good application prospects. By reviewing and identifying the Quality-Markers of Belamcandae Rhizoma, this study can help to establish the evaluation procedure of it on the one hand, and identify the shortcomings research on the other hand. Currently, there are few studies on the anabolism and toxicology of it, and future studies may focus on its in vivo processes, toxicology and adverse effects.


Subject(s)
Rhizome , Humans , Animals , Rhizome/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional , Iridaceae/chemistry , Ethnopharmacology/methods
2.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2138-2146, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812229

ABSTRACT

In this study, four Atractylodes chinensis(A. chinensis) with different leaf shapes, such as the split leaf, long and narrow leaf, oval leaf, and large round leaf, were used as experimental materials to establish a method for simultaneously determining atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in the rhizome of A. chinensis. The expression of key enzyme genes for biosynthesis of acetyl-CoA carboxylase(ACC), 3-hydroxy-3-methylglutaryl-CoA reductase(HMGR), and farnesyl pyrophosphate synthase(FPPS) was detected by real-time fluorescence quantitative polymerase chain reaction(qRT-PCR). High performance liquid chromatography(HPLC) was used to compare the difference in the content of four active components in A. chinensis with different leaf shapes, and the correlation between the content of active components and the expression of key enzyme genes in biosynthesis was discussed. The results show that there was good linearity among atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in the range of 3.30-33.00 µg·mL~(-1)(r =0.999 7), 12.04-120.40 µg·mL~(-1)(r =0.999 5), 29.16-291.60 µg·mL~(-1)(r =0.999 5), and 14.20-142.00 µg·mL~(-1)(r =0.999 5), respectively. The average recoveries were 99.77%(RSD=2.1%), 98.56%(RSD=1.2%), 103.0%(RSD=1.2%), and 100.6%(RSD=1.5%), respectively. The method was accurate and had good reproducibility, which could be used to simultaneously detect atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon. The results showed that there were significant differences in the content of four active components in A. chinensis with different leaf shapes. The content of atractylodin, atractylenolide Ⅰ, and ß-eudesmol in A. chinensis with split leaves was the highest, which were 1.341 9, 5.237 2, and 12.084 3 mg·g~(-1), respectively. The content of atractylon in A. chinensis with long and narrow leaves was the highest(5.470 1 mg·g~(-1)). The content of atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in A. chinensis with oval leaves was the lowest. The total content of the four effective components in descending order was A. chinensis with split leaves > A. chinensis with long and narrow leaves > A. chinensis with large round leaves > A. chinensis with oval leaves. The gene expression levels of key enzymes ACC, HMGR, and FPPS in A. chinensis with split leaves were the highest(P < 0.05), and the gene expression levels of key enzymes ACC and HMGR in A. chinensis with oval leaves were the lowest(P < 0.05). The gene expression level of key enzyme FPPS in A. chinensis with large round leaves was the lowest. In A. chinensis with different leaf shapes, the key enzyme gene ACC was significantly positively correlated with the polyacetylene component, namely atractylodin(P < 0.01), and the key enzyme genes HMGR and FPPS were positively correlated with the sesquiterpene components, namely atractylenolide Ⅰ, ß-eudesmol, and atractylon. In summary, the quality of A. chinensis with split leaves is the best, and the biosynthesis of atractylodin is significantly correlated with the gene expression of key enzyme ACC, which provides a theoretical basis for screening and optimizing the germplasm resources of A. chinensis and improving the quality of medicinal materials.


Subject(s)
Atractylodes , Lactones , Plant Leaves , Sesquiterpenes , Atractylodes/genetics , Atractylodes/chemistry , Atractylodes/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/chemistry , Sesquiterpenes/metabolism , Sesquiterpenes/analysis , Lactones/metabolism , Lactones/analysis , Plant Proteins/genetics , Plant Proteins/metabolism , Furans/metabolism , Drugs, Chinese Herbal , Gene Expression Regulation, Plant , Rhizome/genetics , Rhizome/chemistry , Rhizome/metabolism , Sesquiterpenes, Eudesmane
3.
Front Biosci (Landmark Ed) ; 28(11): 309, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38062827

ABSTRACT

BACKGROUND: Alcohol abuse leads to alcoholic liver disease (ALD), for which no effective treatment is yet known. Gentiana Scabra Bge is a traditional Chinese medicine; its extract has a significant liver protection effect, but its effects on the mechanism of improving alcohol-induced toxicity remain unclear. Therefore, this study used cell and mouse models to investigate how Gentiana Scabra Bge extract (GSE) might affect the TLT4/NF-κB inflammation pathway in ALD. METHODS: In mice, we induced the alcoholic liver injury model by applying alcohol and induced the inflammatory cell model by lipopolysaccharide (LPS)-induced macrophages. Using an enzyme-linked immunosorbent assay (ELISA) kit, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and interleukin 1ß (IL-1ß), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) levels were measured in liver tissue; we also performed histological analysis of liver tissue sections to assess the hepatoprotective effect of GSE on alcohol. Using real-time fluorescence quantification, we determined the expression of toll-like receptor 4 (TLR4) and nuclear factor κB (NF-κB) mRNA levels; we used Western blotting to detect the expression of TLR4/NF-κB signaling pathway-related proteins. RESULTS: We demonstrate that GSE decreased AST and ALT activity, ameliorated liver dysfunction, decreased cytokine levels, and reduced LPS-induced cellular inflammation. In addition, GSE protected mouse liver cells from the inflammatory response by reducing alcohol-induced liver pathological damage and downregulating genes and proteins such as nuclear factors. CONCLUSIONS: GSE can attenuate liver injury in mice through the TLR4/NF-κB pathway by inhibiting the activation of nuclear factors.


Subject(s)
Gentiana , Liver Diseases, Alcoholic , Animals , Mice , Gentiana/chemistry , Inflammation/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Liver/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/prevention & control , NF-kappa B/drug effects , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
4.
Molecules ; 28(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894611

ABSTRACT

(1) Background: Establishment of a method for evaluating Gentianae Radix et Rhizoma (GRR) classes based on chemical composition and core efficacy; (2) Methods: Liquid chromatography-mass spectrometry (LC-MS) was used to determine the chemical constituents of GRR-first class (GF) and GRR-second class (GS). The cell viability, liver function, oxidative stress enzyme activity, and inflammatory factor levels of GF and GS on H2O2-induced HepG2 cells were determined with CCK-8, ELISA, and biochemical methods, and the antioxidant activity of the two was evaluated using bioefficacy; ELISA, biochemical methods, real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) method, and Western blot (WB) were used to determine the liver function, oxidative stress enzyme activity, inflammatory factor levels, and expression of related genes and proteins in mice with acute liver injury (ALI) model induced with 0.3% CCl4 olive oil solution after gavage administration; (3) Results: GF and GS had the same types of components, but the cyclic enol ether terpenes such as morinlon goside c, loganin, gentiopicroside, and swertiamarin differed significantly between the two; the effect of GF on CCl4-induced acute hepatic injury in C57BL/6 mice was stronger compared to GS. It helped alleviate weight loss, increase hepatic and splenic indices, improve hepatic lobular structure and hepatocyte status, inhibit collagen deposition, enhance oxidative stress and anti-inflammatory-related genes and protein expression, and decrease apoptotic genes and proteins more significantly than GS; (4) Conclusions: In this study, we established a GRR class evaluation method combining chemical composition and core medicinal effects, which can rapidly determine the differential composition of GF and GS, detect the quality of GRR through antioxidant bioefficacy, and validate it with in vivo experiments, which provides references for the evaluation of the class of GRR and the rational use of medication in the clinic.


Subject(s)
Drugs, Chinese Herbal , Hydrogen Peroxide , Mice , Animals , Chromatography, High Pressure Liquid/methods , Mice, Inbred C57BL , Drugs, Chinese Herbal/chemistry
5.
Front Microbiol ; 14: 1194224, 2023.
Article in English | MEDLINE | ID: mdl-37547697

ABSTRACT

Root exudates contain a complex array of primary and specialized metabolites that play important roles in plant growth due to their stimulatory and inhibitory activities that can select for specific microbes. In this study, we investigated the effects of different root exudate concentrations on the growth of ginseng (Panax ginseng C. A. Mey), ginsenoside levels, and soil fungal community composition and diversity. The results showed that low root exudate concentrations in the soil promoted ginseng rhizome biomass and ginsenoside levels (Rg1, Re, Rf, Rg2, Rb1, Ro, Rc, Rb2, Rb3, and Rd) in rhizomes. However, the rhizome biomass and ginsenoside levels gradually decreased with further increases in the root exudate concentration. ITS sequencing showed that low root exudate concentrations in the soil hardly altered the rhizosphere fungal community structure. High root exudate concentrations altered the structure, involving microecological imbalance, with reduced abundances of potentially beneficial fungi (such as Mortierella) and increased abundances of potentially pathogenic fungi (such as Fusarium). Correlation analysis showed that rhizome biomass and ginsenoside levels were significantly positively correlated with the abundances of potentially beneficial fungi, while the opposite was true for potentially pathogenic fungi. Overall, low root exudate concentrations promote the growth and development of ginseng; high root exudate concentrations lead to an imbalance in the rhizosphere fungal community of ginseng and reduce the plant's adaptability. This may be an important factor in the reduced ginseng yield and quality and soil sickness when ginseng is grown continuously.

6.
Front Microbiol ; 14: 1145430, 2023.
Article in English | MEDLINE | ID: mdl-37614606

ABSTRACT

Objective: The incidence of non-alcoholic fatty liver disease is increasing every year, and there is growing evidence that metabolites and intestinal bacteria play a causal role in NAFLD. Gentiopicroside, a major iridoids compound in gentian, has been reported to reduce hepatic lipid accumulation. However to date, no studies have confirmed whether the predominance of Gentiopicroside is related to metabolites and intestinal bacteria. Therefore, we sought to study whether the hypolipidemic effect of Gentiopicroside is related to metabolic function and intestinal flora regulation. Methods: In the present study, C57BL/6J mice were fed a high-fat diet for 12 weeks, followed by a high-fat diet with or without Gentiopicroside for 8 weeks, respectively. The Gentiopicroside intervention reduced body weight gain, liver index, and decreased serum biochemical parameters such as alanine aminotransferase, aspartate aminotransferase, and triglycerides in high-fat fed mice. The effect of Gentiopicroside on non-alcoholic fatty liver disease was studied using serum untargeted metabolomics and 16S rDNA assay. Results: Metabolomic analysis showed that the addition of Gentiopicroside significantly altered the levels of amino acids, unmetabolized Gentiopicroside after administration, and metabolites such as Cinnoline, Galabiosylceramide, and Tryptophyl-Tyrosine, which are involved in the pathways regulating bile secretion, tryptophan metabolism, and lipid metabolism. Analysis of intestinal bacteria showed that Gentiopicrosides altered the community composition structure of intestinal bacteria, characterized by an increase and a decrease in beneficial and harmful bacteria, respectively. In addition, correlation analysis showed that the effect of Gentiopicroside on metabolites was positively correlated with intestinal flora Bacteroides, Lactobacillus, Muribaculum, and Prevotellaceae_UCG_001. Finally, the combined analysis revealed that metabolites were associated with the regulation of Firmicutes and Actinobacteria and positively correlated with lipid levels. Conclusion: These results suggest that Gentiopicroside may be a potential agent for the prevention of intestinal disorders and the alleviation of non-alcoholic fatty liver disease.

7.
Oxid Med Cell Longev ; 2023: 1983616, 2023.
Article in English | MEDLINE | ID: mdl-36798685

ABSTRACT

Background: Spleen deficiency diarrhea (SDD) is a common Traditional Chinese Medicine (TCM) gastrointestinal condition, the causes of which include dysfunction of the intestinal barrier and microbiota. Rice water-fried Atractylodis Rhizoma (RAR) is a commonly used drug to treat this condition, but its mechanism remains unclear. This study explored the related mechanisms of ethanolic extract of rice water-fried Atractylodis Rhizoma (EAR) in the treatment of SDD by examining changes in the intestinal microbiota. Method: Wistar rats were randomly divided into 4 groups including the control, model, EAR low, and high-dose groups, 6 rats in each group. All rats, except the control group, were induced to develop SDD by a bitter-cold purgation method with rhubarb. The therapeutic effect of EAR on SDD was evaluated by pathological sections, inflammatory indicators (TNF-α, IL-1ß, and IL-10), gastrointestinal-related indicators (GAS, DAO, D-lactate, VIP, and SIgA), and intestinal flora (bacteria and fungi) analysis. Results: The results showed that the developed SDD rat model (model group) showed weight loss, decreased food intake, and increased fecal moisture content. Compared with those of the control group, the levels of TNF-α, IL-1ß, DAO, D-lactate, and VIP in the model group were significantly increased, but the levels of IL-10, GAS and SIgA were significantly decreased (p < 0.05). However, the indicators were significantly improved after EAR treatment, indicating that EAR maintained the balance of pro- and anti-inflammatory cytokines and reduced gastric emptying, thereby protecting intestinal barrier function, alleviating intestinal mucosal injury, and relieving SDD by regulating the release of neurotransmitters. EAR was also shown to prevent infection by promoting the accumulation of noninflammatory immunoglobulin SIgA and improving intestinal mucosal immunity to inhibit the adhesion of bacteria, viruses, and other pathogens. Intestinal microbiome analysis showed that the intestinal bacteria and fungi of SDD model rats changed greatly compared with the control group, resulting in intestinal microecological imbalance. The reversal in the composition of the flora after EAR treatment was mainly characterized by a large enrichment of beneficial bacteria represented by Lactobacillus and a decrease in the abundance of potentially pathogenic fungi represented by Aspergillus. Thus, it was speculated that EAR primarily functions to alleviate SDD by increasing the abundance of beneficial bacteria and reducing the abundance of potentially pathogenic fungi. Conclusion: The strong therapeutic effect of EAR on SDD suggests that it is a promising treatment for this condition.


Subject(s)
Atractylodes , Gastrointestinal Microbiome , Oryza , Rats , Animals , Spleen/pathology , Rats, Wistar , Interleukin-10 , Tumor Necrosis Factor-alpha/pharmacology , Diarrhea/drug therapy , Diarrhea/pathology , Bacteria , Immunoglobulin A, Secretory/pharmacology , Lactates/pharmacology , Water/pharmacology
8.
Front Microbiol ; 13: 919434, 2022.
Article in English | MEDLINE | ID: mdl-35801112

ABSTRACT

Soil microorganisms affect crop rhizospheres via the transformation and transport of nutrients, which has important influences on soil fertility, carbon sequestration, and plant yield and health in agroecosystems. There are few reports on the effects of fertilizer application on the growth of Panax ginseng (C. A. Mey.) or the structure of its rhizosphere microbial communities. In this study, an orthogonal experimental design was used to explore the effects of nine different combinations of nitrogen (N), phosphorus (P), and potassium (K) fertilizers with different amounts and proportions on ginseng growth and accumulation of ginsenosides and the structure of rhizosphere soil fungal communities. Soil without fertilization was the control. With the combined application of NPK, ginseng growth and development increased. The fertilization scheme N3P1K3, with N fertilizer at 50 g·m-2, P fertilizer at 15 g·m-2, and K fertilizer at 60 g·m-2, had the most comprehensive benefit and significantly increased ginseng rhizome biomass and ginsenoside contents (Rg1, Re, Rf, Rg2, Rb1, Ro, Rc, Rb2, Rb3, and Rd). Amplicon sequencing showed that NPK application increased the diversity of fungal communities in ginseng rhizospheres, whereas richness was bidirectionally regulated by proportions and amounts of NPK. Ascomycota was the dominant fungal phylum in ginseng rhizosphere soil, and relative abundances decreased with combined NPK application. Combined NPK application increased the relative abundance of potential beneficial fungi, such as Mortierella, but decreased that of potentially pathogenic fungi, such as Fusarium. Correlation analysis showed that potential beneficial fungi were significantly positively correlated with ginseng rhizome yield and ginsenoside contents, whereas the opposite relation was observed with potential pathogenic fungi. Thus, in addition to directly increasing crop growth, precise NPK application can also increase crop adaptability to the environment by shaping specific microbial communities. The results of this study suggest that the combined effects of biotic and abiotic processes on agricultural production determine crop yield and quality.

9.
Front Plant Sci ; 13: 799201, 2022.
Article in English | MEDLINE | ID: mdl-35371119

ABSTRACT

In the planting of crops, especially medicinal plants, formula fertilization is important for improving the utilization rate of elements, soil quality, crop yield, and quality. Therefore, it is important to study targeted fertilizer application schemes for sustainable agricultural development and environmental protection. In this study, an L9(34) orthogonal design was used to conduct a field experiment to study the effects of NPK combined application on the growth and pharmacodynamic component biosynthesis of Atractylodes chinensis (DC.) Koidz. Results showed that after applying a base fertilizer at the seedling stage (late May), topdressing at the vegetative stage (late June) and fruit stage (late August) was beneficial to the growth and development of A. chinensis. The high concentrations of phosphorus were conducive to the accumulation of yield and effective components, and the best harvest time was after late October. Principal component analysis (PCA) showed that the comprehensive score of T6 treatment was the highest, indicating that the optimal fertilization scheme for the high yield and high quality of A. chinensis was (N2P3K1): N 180, P2O5 225, and K2O 105 kg⋅ha-1. A signaling response analysis showed that during the growth and development of A. chinensis, the T6 fertilization scheme had clear effects on the activity and gene expression of the key enzymes acetyl-CoA carboxylase (ACC) and farnesyl pyrophosphate synthase (FPPS). Under the T4 [(N2P1K2): N 180, P2O5 75, and K2O 210 kg⋅ha-1] fertilization scheme, the activity and gene expression of the key enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) were higher. Moreover, ACC was closely related to the synthesis of the polyacetylene component atractylodin, and FPPS played an important regulatory role in the synthesis of sesquiterpene components atractylenolide II, ß-eudesmol, and atractylon. In summary, the high phosphorus fertilization scheme T6 could notably increase the yield of A. chinensis, and promote the accumulation of polyacetylene and sesquiterpene volatile oils by increasing the expression of ACC and FPPS. Therefore, we postulate that the precise application of nutrients (NPK) plays a vital role in the yield formation and quality regulation of A. chinensis.

10.
Front Pharmacol ; 13: 1041073, 2022.
Article in English | MEDLINE | ID: mdl-36618938

ABSTRACT

Cancer is one of the most difficult diseases to be treated in the world. Immunotherapy has made great strides in cancer treatment in recent years, and several tumor immunotherapy drugs have been approved by the U.S. Food and Drug Administration. Currently, immunotherapy faces many challenges, such as lacking specificity, cytotoxicity, drug resistance, etc. Nanoparticles have the characteristics of small particle size and stable surface function, playing a miraculous effect in anti-tumor treatment. Nanocarriers such as polymeric micelles, liposomes, nanoemulsions, dendrimers, and inorganic nanoparticles have been widely used to overcome deficits in cancer treatments including toxicity, insufficient specificity, and low bioavailability. Although nanomedicine research is extensive, only a few nanomedicines are approved to be used. Either Bottlenecks or solutions of nanomedicine in immunotherapy need to be further explored to cope with challenges. In this review, a brief overview of several types of cancer immunotherapy approaches and their advantages and disadvantages will be provided. Then, the types of nanomedicines, drug delivery strategies, and the progress of applications are introduced. Finally, the application and prospect of nanomedicines in immunotherapy and Chimeric antigen receptor T-cell therapy (CAR-T) are highlighted and summarized to address the problems of immunotherapy the overall goal of this article is to provide insights into the potential use of nanomedicines and to improve the efficacy and safety of immunotherapy.

11.
J Sep Sci ; 43(12): 2436-2446, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32227667

ABSTRACT

Four types of middle-pressure chromatogram isolated gels are evaluated for adsorption or desorption characteristics of ginsenosides from Panax ginseng. Among them, SP207SS and SP2MGS were selected for dynamic investigations based on their static adsorption or desorption capacity of total ginsenoside. Their adsorption kinetics was better explained by pseudosecond-order model and isotherms were preferably fitted to Langmuir model. Dynamic breakthrough experiments indicated an optimum sample loading speed of 4 bed volume/h for either SP207SS or SP2MGS. Desorption speed was determined to be 2 bed volume/h according to desorption amount of total ginsenoside in their effluents. Eight ginsenosides were identified and quantified by high performance liquid chromatography-triple quadropole-mass spectrometry in total ginsenoside extract and different fractions during stepwise dynamic elution. For SP207SS, 27.62% of loaded ginsenosides was detected in 40% ethanol fraction, while 59.12% of them were found in 60% ethanol fraction. As on SP2MGS, the number went to 53.71 and 44.43%, respectively. Recovery rate of ginsenosides were calculated to 78.65% for SP207SS and 89.53% for SP2MGS, respectively. Intriguingly, content of Rg1 and Re in 40% ethanol fraction from SP207SS became 20.1 and 18.6 times higher than that in total ginsenoside extract by one-step elution, which could be leveraged for the facile enrichment of these two ginsenosides from natural sources.


Subject(s)
Ginsenosides/analysis , Panax/chemistry , Adsorption , Chromatography, High Pressure Liquid , Gels/chemistry , Gels/isolation & purification , Pressure
12.
J Ginseng Res ; 40(1): 28-37, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26843819

ABSTRACT

BACKGROUND: Panax ginseng cannot be cultivated on the same land consecutively for an extended period, and the underlying mechanism regarding microorganisms is still being explored. METHODS: Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) and BIOLOG methods were used to evaluate the microbial genetic and functional diversity associated with the P. ginseng rhizosphere soil in various cultivation ages and modes. RESULTS: The analysis of microbial diversity using PCR-DGGE showed that microbial communities were significantly variable in composition, of which six bacterial phyla and seven fungal classes were detected in P. ginseng soil. Among them, Proteobacteria and Hypocreales dominated. Fusarium oxysporum, a soilborne pathogen, was found in all P. ginseng soil samples except R0. The results from functional diversity suggested that the microbial metabolic diversity of fallow soil abandoned in 2003 was the maximum and transplanted soil was higher than direct-seeding soil and the forest soil uncultivated P. ginseng, whereas the increase in cultivation ages in the same mode led to decreases in microbial diversity in P. ginseng soil. Carbohydrates, amino acids, and polymers were the main carbon sources utilized. Furthermore, the microbial diversity index and multivariate comparisons indicated that the augmentation of P. ginseng cultivation ages resulted in decreased bacterial diversity and increased fungal diversity, whereas microbial diversity was improved strikingly in transplanted soil and fallow soil abandoned for at least one decade. CONCLUSION: The key factors for discontinuous P. ginseng cultivation were the lack of balance in rhizosphere microbial communities and the outbreak of soilborne diseases caused by the accumulation of its root exudates.

13.
Zhongguo Zhong Yao Za Zhi ; 39(24): 4740-7, 2014 Dec.
Article in Chinese | MEDLINE | ID: mdl-25898570

ABSTRACT

Using the field sampling and indoor soil cultivation methods, the dynamic of ginseng rhizosphere soil microbial activity and biomass with three cultivated ages was studied to provide a theory basis for illustrating mechanism of continuous cropping obstacles of ginseng. The results showed that ginseng rhizosphere soil microbial activity and biomass accumulation were inhibited observably by growing time. The soil respiration, soil cellulose decomposition and soil nitrification of ginseng rhizosphere soil microorganism were inhibited significantly (P <0.05), in contrast to the control soil uncultivated ginseng (R0). And the inhibition was gradual augmentation with the number of growing years. The soil microbial activity of 3a ginseng soil (R3) was the lowest, and its activity of soil respiration, soil cellulose decomposition, soil ammonification and soil nitrification was lower than that in R0 with 56.31%, 86.71% and 90. 53% , respectively. The soil ammonification of ginseng rhizosphere soil microbial was significantly promoted compared with R0. The promotion was improved during the early growing time, while the promotion was decreased with the number of growing years. The soil ammonification of R1, R2 and R3 were lower than that in R0 with 32.43%, 80.54% and 66.64% separately. The SMB-C and SMB-N in ginseng rhizosphere soil had a decreased tendency with the number of growing years. The SMB-C difference among 3 cultivated ages was significant, while the SMB-N was not. The SMB of R3 was the lowest. Compared with R0, the SMB-C and the SMB-N were significantly reduced 77.30% and 69.36%. It was considered by integrated analysis that the leading factor of continuous cropping obstacle in ginseng was the changes of the rhizosphere soil microbial species, number and activity as well as the micro-ecological imbalance of rhizosphere soil caused by the accumulation of ginseng rhizosphere secretions.


Subject(s)
Bacteria/growth & development , Panax/microbiology , Soil Microbiology , Soil/chemistry , Agriculture , Ammonium Compounds/metabolism , Biomass , Cellulose/metabolism , Nitrification , Panax/growth & development , Plant Roots/growth & development , Plant Roots/microbiology , Rhizosphere , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...