Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Sci Rep ; 14(1): 13085, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849466

ABSTRACT

The response of cardiac fibroblast proliferation to detrimental stimuli is one of the main pathological factors causing heart remodeling. Reactive oxygen species (ROS) mediate the proliferation of cardiac fibroblasts. However, the exact molecular mechanism remains unclear. In vivo, we examined the oxidative modification of miRNAs with miRNA immunoprecipitation with O8G in animal models of cardiac fibrosis induced by Ang II injection or ischemia‒reperfusion injury. Furthermore, in vitro, we constructed oxidation-modified miR-30c and investigated its effects on the proliferation of cardiac fibroblasts. Additionally, luciferase reporter assays were used to identify the target of oxidized miR-30c. We found that miR-30c oxidation was modified by Ang II and PDGF treatment and mediated by excess ROS. We demonstrated that oxidative modification of G to O8G occurred at positions 4 and 5 of the 5' end of miR-30c (4,5-oxo-miR-30c), and this modification promoted cardiac fibroblast proliferation. Furthermore, CDKN2C is a negative regulator of cardiac fibroblast proliferation. 4,5-oxo-miR-30c misrecognizes CDKN2C mRNA, resulting in a reduction in protein expression. Oxidized miR-30c promotes cardiac fibroblast proliferation by mismatch mRNA of CDKN2C.


Subject(s)
Cell Proliferation , Fibroblasts , MicroRNAs , Oxidation-Reduction , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Fibroblasts/metabolism , Fibroblasts/cytology , Reactive Oxygen Species/metabolism , Myocardium/metabolism , Myocardium/cytology , Angiotensin II/pharmacology , Rats , Male , Mice , Fibrosis
2.
J Multidiscip Healthc ; 17: 1641-1651, 2024.
Article in English | MEDLINE | ID: mdl-38646015

ABSTRACT

Background: Interpretation of ultrasound findings of thyroid nodules is subjective and labor-intensive for radiologists. Artificial intelligence (AI) is a relatively objective and efficient technology. We aimed to establish a fully automatic detection and diagnosis system for thyroid nodules based on AI technology by analyzing ultrasound video sequences. Patients and Methods: We prospectively acquired dynamic ultrasound videos of 1067 thyroid nodules (804 for training and 263 for validation) from December 2018 to January 2021. All the patients underwent hemithyroidectomy or total thyroidectomy. Dynamic ultrasound videos were used to develop an AI system consisting of two deep learning models that could automatically detect and diagnose thyroid nodules. Average precision (AP) was used to estimate the performance of the detection model. The area under the receiver operating characteristic curve (AUC) was used to measure the performance of the diagnostic model. Results: Location and shape were accurately detected with a high AP of 0.914 in the validation cohort. The AUC of the diagnostic model was 0.953 in the validation cohort. The sensitivity and specificity of junior and senior radiologists were 76.9% vs 78.3% and 68.4% vs 81.1%, respectively. The diagnostic performance of the AI diagnostic model was superior to that of junior radiologists (P = 0.016) and was not significantly different from that of senior radiologists (P = 0.281). Conclusion: We established a fully automatic detection and diagnosis system for thyroid nodules based on ultrasound video using an AI approach that can be conveniently applied to optimize the management of patients with thyroid nodules.

3.
Cell Mol Biol Lett ; 29(1): 3, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172650

ABSTRACT

BACKGROUND: Circular RNAs are enriched in cardiac tissue and play important roles in the pathogenesis of heart diseases. In this study, we aimed to investigate the regulatory mechanism of a conserved heart-enriched circRNA, circPan3, in cardiac hypertrophy. METHODS: Cardiac hypertrophy was induced by isoproterenol. The progression of cardiomyocyte hypertrophy was assessed by sarcomere organization staining, cell surface area measurement, and expression levels of cardiac hypertrophy markers. RNA interactions were detected by RNA pull-down assays, and methylated RNA immunoprecipitation was used to detect m6A level. RESULTS: The expression of circPan3 was downregulated in an isoproterenol-induced cardiac hypertrophy model. Forced expression of circPan3 attenuated cardiomyocyte hypertrophy, while inhibition of circPan3 aggravated cardiomyocyte hypertrophy. Mechanistically, circPan3 was an endogenous sponge of miR-320-3p without affecting miR-320-3p levels. It elevated the expression of HSP20 by endogenously interacting with miR-320-3p. In addition, circPan3 was N6-methylated. Stimulation by isoproterenol downregulated the m6A eraser ALKBH5, resulting in N6-methylation and destabilization of circPan3. CONCLUSIONS: Our research is the first to report that circPan3 has an antihypertrophic effect in cardiomyocytes and revealed a novel circPan3-modulated signalling pathway involved in cardiac hypertrophy. CircPan3 inhibits cardiac hypertrophy by targeting the miR-320-3p/HSP20 axis and is regulated by ALKBH5-mediated N6-methylation. This pathway could provide potential therapeutic targets for cardiac hypertrophy.


Subject(s)
MicroRNAs , RNA, Circular , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Isoproterenol , Cardiomegaly/genetics , Cardiomegaly/pathology , Myocytes, Cardiac/metabolism
4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 15-31, 2024 01.
Article in English | MEDLINE | ID: mdl-37555852

ABSTRACT

Deer antler velvet, with kidney tonifying, promoting the production of essence and blood, strengthening tendons and bones, not only has a thousand-year medicinal history but also its modern pharmacology mainly focuses on its active polypeptides on motor, nerve, and immune systems. The purpose of this report is to fill the gap in the comprehensive, systematic, and detailed review of polypeptides during the recent 30 years (1992-2023). The research method was to review 53 pharmacological articles from the Public Medicine, Web of science, ACS, and Science Direct database sources by searching the keywords "pilose antler," "deer velvet," "Pilose Antler Peptide (PAP) and Velvet Antler Polypeptide (VAP)." The results showed that deer antler polypeptides (DAPs), by regulating EGF, EGFR, MAPK, P38, ERK, NF-κB, Wnt, PI3K, Akt, MMP, AMPK, Stir1, NLRP3, HO-1, Nrf, Rho, TLR, TGF-ß, Smad, Ang II, etc., revealed their effects on seven system-related diseases and their mechanisms, including osteoarthritis, intervertebral disc degeneration, osteoporosis, Alzheimer's, Parkinson's, triple-negative breast cancer, liver injury, liver fibrosis, cardiovascular disease, acute lung injury, and late-onset hypogonadism. In conclusion, DAPs have good effects on motor and other system-related diseases, but the secondary and tertiary structures of DAPs (0.5-1800 KDa) need to be further elucidated, and the structure-activity relationship study is still unavailable and needs to be covered. It is expected that this review may provide the necessary literature support for further research. The activities and mechanisms of polypeptides from the past 30 years (1992-2023) are summarized covering seven systems, related diseases, and its regulatory genes and proteins.


Subject(s)
Antlers , Deer , Osteoarthritis , Osteoporosis , Animals , Peptides/pharmacology , Antlers/chemistry
5.
J Appl Toxicol ; 44(4): 488-500, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37697940

ABSTRACT

Based on the 87 original publications only from quartiles 1 and 2 of Journal Citation Report (JCR) collected by the major academic databases (Science Direct, Web of Science, PubMed, and Wiley) in 2022, the frontier of toxicology studies in zebrafish model is summarized. Herewith, a total of six aspects is covered such as developmental, neurological, cardiovascular, hepatic, reproductive, and immunizing toxicities. The tested samples involve chemicals, drugs, new environmental pollutants, nanomaterials, and its derivatives, along with those related mechanisms. This report may provide a frontier focus benefit to researchers engaging in a zebrafish model for environment, medicine, food, and other fields.


Subject(s)
Environmental Pollutants , Zebrafish , Animals , Reproduction
6.
MedComm (2020) ; 4(6): e456, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38116061

ABSTRACT

O-linked-ß-N-acetylglucosamine (O-GlcNAcylation) is a distinctive posttranslational protein modification involving the coordinated action of O-GlcNAc transferase and O-GlcNAcase, primarily targeting serine or threonine residues in various proteins. This modification impacts protein functionality, influencing stability, protein-protein interactions, and localization. Its interaction with other modifications such as phosphorylation and ubiquitination is becoming increasingly evident. Dysregulation of O-GlcNAcylation is associated with numerous human diseases, including diabetes, nervous system degeneration, and cancers. This review extensively explores the regulatory mechanisms of O-GlcNAcylation, its effects on cellular physiology, and its role in the pathogenesis of diseases. It examines the implications of aberrant O-GlcNAcylation in diabetes and tumorigenesis, highlighting novel insights into its potential role in cardiovascular diseases. The review also discusses the interplay of O-GlcNAcylation with other protein modifications and its impact on cell growth and metabolism. By synthesizing current research, this review elucidates the multifaceted roles of O-GlcNAcylation, providing a comprehensive reference for future studies. It underscores the potential of targeting the O-GlcNAcylation cycle in developing novel therapeutic strategies for various pathologies.

7.
J Diabetes ; 15(12): 1070-1080, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37593852

ABSTRACT

PURPOSE: Diabetic cardiomyopathy is the leading cause of death in diabetic patients, and the mechanism by which factors other than hyperglycemia contribute to the development of diabetic cardiomyopathy is unknown. Serum small extracellular vesicles (sEVs) carry bioactive proteins or nuclei, which enter into remote tissues and modulate cell functions. However, in diabetic conditions, the changes of lipids carried by sEVs has not been identified. Our study aims to explore the changes of lipids in sEVs in diabetic patients with cardiovascular disease, we hope to provide new ideas for understanding the role of lipid metabolism in the pathogenesis of diabetic cardiomyopathy. METHODS: SEVs samples derived from serum of health controls (Ctrl), diabetic patients without cardiovascular diseases (DM), and diabetic patients with cardiovascular diseases (DM-CAD) were used for lipidomics analysis. Because AC16 cells are also treated with those sEVs to confirm the entrance of cells and effects on insulin sensitivity, a lipidomics analysis on cells was also performed. RESULTS AND CONCLUSIONS: In this study, we found that docosahexaenoic acid (DHA)-triacylglycerides of sEVs from serums of DM-CAD patients decreased significantly, and those sEVs could enter into AC16 cells and diminish insulin sensitivity. In addition, DHA-triacylglycerides were also decreased in cells treated with sEVs from DM-CAD. Therefore, DHA-triacylglycerides carried by sEVs may mediate intercellular signaling and be associated with the incidence of diabetic cardiovascular complications.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , Diabetic Cardiomyopathies , Extracellular Vesicles , Insulin Resistance , Humans , Docosahexaenoic Acids , Triglycerides
8.
Plant Physiol Biochem ; 201: 107899, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37494825

ABSTRACT

Trees are inevitably attacked by different kinds of pathogens in their life. However, little is known about the regulatory factors in poplar response to different pathogen infections. MicroRNA159 (miR159) is a highly conserved microRNA (miRNA) in plants and regulates plant development and stress responses. Here, transgenic poplar overexpressing pto-miR159a (OX-159) showed antagonistic regulation mode to poplar stem disease caused by fungi Cytospora chrysosperma and bacteria Lonsdalea populi. OX-159 lines exhibited a higher susceptibility after inoculation with bacterium L. populi, whereas enhanced disease resistance to necrotrophic fungi C. chrysosperma compared with wild-type (WT) poplars. Intriguingly, further disease assay found that OX159 line rendered the poplar susceptible to hemi-biotrophic fungi Colletotrichum gloeosporioide, exhibiting larger necrosis and lower ROS accumulation than WT lines. Transcriptome analyses revealed that more down-regulated differentially expressed genes with disease-resistant domains in OX-159 line compared with WT line. Moreover, the central mediator NPR1 of salicylic acid (SA) pathway showed a decrease in expression level, while jasmonic acid/ethylene (JA/ET) signal pathway marker genes ERF, as well as PR3, MPK3, and MPK6 genes showed an increase level in OX159-2 and OX159-5 compared with WT lines. Further spatio-temporal expression analysis revealed JA/ET signaling was involved in the dynamic response process to C. gloeosporioides in WT and OX159 lines. These results demonstrate that overexpression of pto-miR159a resulted in the crosstalk changes of the downstream hub genes, thereby controlling the disease resistance of poplars, which provides clues for understanding pto-miR159a role in coordinating poplar-pathogen interactions.


Subject(s)
Disease Resistance , MicroRNAs , Disease Resistance/genetics , Signal Transduction , Gene Expression Profiling , MicroRNAs/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Salicylic Acid/metabolism , Gene Expression Regulation, Plant
9.
Genes (Basel) ; 14(1)2023 01 16.
Article in English | MEDLINE | ID: mdl-36672971

ABSTRACT

Parapanteles hypsidrae (Wilkinson, 1928) and Protapanteles immunis (Haliday, 1834) are the most important parasitic wasps of Ectropis grisescens Warren and Ectropis obliqua (Prout). We sequenced and annotated the mitochondrial genomes of Pa. hyposidrae and Pr. immunis, which are 17,063 bp and 16,397 bp in length, respectively, and possess 37 mitochondrial genes. We discovered two novel types of gene rearrangement, the local inversion of nad4L in Pa. hyposidrae and the remote inversion of the block cox3-nad3-nad5-nad4 in Pr. immunis, within the mitogenomes of Braconidae. The phylogenetic analysis supported the subfamily Microgastrinae is a monophyletic group, but the tribes Apantelini and Cotesiini within this subfamily are paraphyletic groups.


Subject(s)
Genome, Mitochondrial , Wasps , Animals , Wasps/genetics , Phylogeny , Base Sequence , Gene Rearrangement
10.
Plant Cell Environ ; 46(1): 306-321, 2023 01.
Article in English | MEDLINE | ID: mdl-36217265

ABSTRACT

Different poplar varieties vary in their tolerance to certain pathogens. However, knowledge about molecular regulation and critical responses of resistant poplars during pathogen infection remains scarce. To investigate adaptive responses to canker disease caused by the bacterium Lonsdalea populi, we screened three poplar varieties with contrasting tolerance, including Populus deltoides. 'Zhonglin 2025' (2025), Populus × Euramericana. '74/76' (107) and Populus tomentosa cv 'henan' (P. tomentosa). Transcriptomic analysis revealed significant changes in the expression levels of defence-related genes in different poplar varieties in response to infection, which reshaped the PTI and ETI processes. Intriguingly, photosynthesis-related genes were found to be highly expressed in the resistant variety, whereas the opposite was observed in the susceptible variety. Susceptible poplars maintained the activation of defence-related genes during early period of onset, which restricted the expression of photosynthesis-related and auxin signal-related genes. Furthermore, combined with metabolomic analysis, differences in the content of antibacterial substances and key differentially expressed genes in phenylpropane and flavonoid biosynthesis pathways were identified. Delayed induction of catechin in the susceptible variety and it's in vitro antibacterial activity were considered to be one of the important reasons for the differences in resistance to L. populi compared with the resistant variety, which is of practical interest for tree breeding. Moreover, the trade-off between growth and defence observed among the three poplar varieties during infection provides new insights into the multilevel regulatory circuits in tree-pathogen interactions.


Subject(s)
Metabolomics
11.
Mol Pharm ; 20(1): 82-89, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36480277

ABSTRACT

Phospholipids are lipids that constitute the basic structure of cell membranes. In-depth research has shown that in addition to supporting cell structures, phospholipids participate in multiple cellular processes, including promoting cell signal transduction, guiding protein translocation, activating enzymatic activity, and eliminating dysfunctional/redundant organelles/cells. Diabetes is a chronic metabolic disease with a complicated etiology and pathology. Studies have shown that the level of certain phospholipids, for example, the ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE) in liver tissue, is negatively associated with insulin sensitivity. In addition, PS is a phospholipid exhibiting extensive cellular functions in diabetes. For this review, we analyzed many PS studies focusing on diabetes and insulin sensitivity in recent years and found that PS participates in controlling insulin secretion, regulating insulin signaling transduction, and participating in the progression of diabetic complications by mediating coagulation disorders in the microvasculature or targeting mitochondria. Moreover, PS supplements in food and PS-containing liposomes have been shown to protect against type 1 and type 2 diabetes (T1D and T2D, respectively) in animal studies. Therefore, by summarizing the regulatory roles played by PS in diabetes and the potential of successfully using PS or PS-containing liposomes for diabetic therapy, we hope to provide new ideas for further research into the mechanisms of diabetes and for drug development for treating diabetes and its complications.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Liposomes , Phosphatidylserines , Diabetes Mellitus, Type 2/drug therapy , Phospholipids/metabolism , Phosphatidylethanolamines
12.
Article in English | MEDLINE | ID: mdl-36429975

ABSTRACT

The purpose of this study was to investigate the effects of multi-modal strength training or flexibility training on hamstring flexibility and strength in young males and females. A total of 20 male and 20 female college students (aged 18-24 years) participated in this study and were randomly assigned to either a multi-modal flexibility intervention group or strength intervention group. Passive straight leg raise and isokinetic strength test were performed before and after the intervention to determine flexibility and strength of the participants. Multivariate repeated-measure ANOVA was used to determine the effect of training group and gender on hamstring strength and flexibility. Both male and female participants in the strength intervention group significantly increased peak torque, relative peak torque, and flexibility (all p ≤ 0.029). Both male and female participants in the flexibility intervention group significantly increased flexibility (both p ≤ 0.001). Female participants in the flexibility intervention group significantly increased peak torque and relative peak torque (both p ≤ 0.023). However, no change was seen in peak torque and relative peak torque of male participants in the flexibility intervention group (p ≥ 0.676). An 8-week strength training program involving various training components can increase flexibility in both males and females, although the flexibility of male participants only increased slightly. While hamstring flexibility training protocol consisted of different types of stretching improved both flexibility and strength in female participants, male participants increased only flexibility but not strength, indicating such effects were gender-specific. For subjects with relatively low strength (e.g., older adults, sedentary women, postoperative rehabilitation population, etc.), strength training alone or flexibility training alone may increase both strength and flexibility.


Subject(s)
Hamstring Muscles , Resistance Training , Aged , Female , Humans , Male , Exercise Therapy , Students , Torque
13.
Nanoscale ; 14(36): 13324-13333, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36065833

ABSTRACT

The presence of a quasi-water/premelting layer at the interface between wall and ice when the temperature (T) is below the melting point was extensively observed in experiments. In this work, molecular dynamics simulations are performed to analyze the underlying physics of the quasi-water layer and the effects of the layer on the ice tensile stress. The results indicate that each molecule and its four nearest neighbours in the quasi-water layer representing an equilibrium structure gradually form a tetrahedral ice-like arrangement from an unstructured liquid-like structure along the direction away from the wall. The average density of the quasi-water layer is equal to or higher than the bulk density of water at T ≥ 240 K or T ≤ 240 K respectively, and reaches 1.155 g cm-3 at T = 210 K, suggesting a structural correlation with the high-density liquid phase of water. Depending on the temperature and wall wettability, the thickness of the quasi-water layer (Hq) ranges from ∼2 Å to ∼25 Å. For prescribed hydrophilic walls, Hq increases monotonically with temperature, and is almost proportional to(Tm - T)-1/3, where Tm is the melting temperature of ice. Hq keeps an almost constant value (2 Å) as the temperature increases and rises sharply after passing a threshold temperature of T ≈ 250 K. In the joint effects of the wall wettability and quasi-water layer's thickness, the ice tensile stress decreasing monotonically at a larger temperature shows an upward trend and then reduces to almost a constant value as the wall changes from a hydrophobic to a hydrophilic one. The results reveal the potential development of anti-icing/de-icing techniques by heating the wall or modifying its surface to increase Hq.

14.
J AOAC Int ; 105(6): 1741-1754, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-35876857

ABSTRACT

BACKGROUND: Rumex japonicus Houtt (R. japonicus) is used mainly to treat various skin diseases in Southeast Asia. However, there are few studies on its quality evaluation methods and antifungal activity. OBJECTIVE: To establish the quality control criteria for the effective parts from R. japonicus against psoriasis. METHODS: High-performance liquid chromatography (HPLC) was established for its fingerprint, and the similarity evaluation, cluster analysis (CA) and principal component analysis (PCA) were used to reveal the differences of those fingerprints among the tested R. japonicus. Network pharmacology analyzed the relationship between the components and psoriasis, revealing the potential targets of R. japonicus. Oxford cup anti-C. albicans experiment was used to verify the antifungal activity of R. japonicus. RESULTS: HPLC was developed for the R. japonicus fingerprint by optimizing for 10 batches of quinquennial R. japonicus from different habitats; the 18 common peaks were identified with 10 characteristic peaks such as rutin, quercetin, aloe-emodin, nepodin, emodin, musizin-8-O-ß-D-glucoside, chrysophanol, emodin-8-O-ß-D-glucopyranoside, chrysophanol-8-O-ß-D-glucopyranoside, and aloin, respectively. The network pharmacology-based analysis showed a high correlation between R. japonicus and psoriasis, revealing the potential targets of R. japonicus. The oxford cup anti-Candida albicans experiment displayed a significant activity response to emodin-8-O-ß-D-glucopyranoside and the ethyl acetate fraction of R. japonicus acidic aqueous extract. CONCLUSIONS: A new and optimized HPLC method was created, and the research provides an experimental basis for the development of effective drugs related to C. albicans. HIGHLIGHTS: The fingerprint of R. japonicus was organically combined with network pharmacology to further clarify its criteria for quality control.


Subject(s)
Drugs, Chinese Herbal , Emodin , Psoriasis , Rumex , Humans , Rumex/chemistry , Chromatography, High Pressure Liquid , Antifungal Agents/pharmacology , Quercetin , Network Pharmacology , Glucosides , Rutin , Drugs, Chinese Herbal/pharmacology
15.
Int J Mol Sci ; 23(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35742808

ABSTRACT

Non-coding RNAs (ncRNAs) play essential roles in plants by modulating the expression of genes at the transcriptional or post-transcriptional level. In recent years, ncRNAs have been recognized as crucial regulators for growth and development in forest trees, and ncRNAs that respond to various abiotic stresses are now under intense study. In this review, we summarized recent advances in the understanding of abiotic stress-responsive microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in forest trees. Furthermore, we analyzed the intersection of miRNAs, and epigenetic modified ncRNAs of forest trees in response to abiotic stress. In particular, the abiotic stress-related lncRNA/circRNA-miRNA-mRNA regulatory network of forest trees was explored.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Forests , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/genetics , Stress, Physiological/genetics , Trees/genetics , Trees/metabolism
16.
Chem Biodivers ; 19(4): e202100928, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35243763

ABSTRACT

To integrate the active advantages of 18ß-glycyrrhetinic acid (18ß-GA) and emodin, improve bioavailability, increase efficiency, and reduce toxicity, a one-step innovative synthetic route was set up for the first time: 4-dimethylaminopyridine (DMAP) was used as catalyst, 1-ethyl-(3-dimethylaminopropyl)carboimide hydrochloride (EDCI) as condensation agent, dry dichloromethane (DCM) as solvent at 25 °C for 12 h, the three target products were obtained and purified by high performance liquid chromatography (HPLC), the chemical structures of them were characterized by nuclear magnetic resonance (NMR) technique and high resolution electron ionization mass spectrometry (HREI-MS), namely, 18ß-glycyrrhetinic acid-3-emodin ester (1, yield 78.83 %, known), di-18ß-glycyrrhetinic acid-1-emodin ester (2, yield 6.49 %, new), and di-18ß-glycyrrhetinic acid-8-emodin ester (3, yield 1.81 %, new). To estimate their effects of the products on toxicity in zebrafish embryos and juvenile fishes, the two precursors and three target products were assayed involving in hatching rate, survival rate, morphology, heart rate, and apoptosis of cardiomyocytes. The results showed that the target products enhanced the hatching and survival rate of zebrafish embryos, decreased the malformation rate and the apoptosis of cardiomyocytes. It should be suggested that the one-step synthesis route with high yield makes the industrial application of the target products possible due to significantly reduced toxicity. The two new by-products provide potential candidates for the applications of pharmaceutical industry in the future.


Subject(s)
Emodin , Glycyrrhetinic Acid , Animals , Esters/pharmacology , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/chemistry , Glycyrrhetinic Acid/pharmacology , Zebrafish
17.
Front Cardiovasc Med ; 9: 815916, 2022.
Article in English | MEDLINE | ID: mdl-35321102

ABSTRACT

Objective: Many studies have reported that microRNAs (miRs) are involved in the regulation of doxorubicin (DOX)-induced cardiotoxicity. MiR-194-5p has been reported significantly upregulated in patients with myocardial infarction; however, its role in myocardial diseases is still unclear. Various stimuluses can trigger the endoplasmic reticulum (ER) stress and it may activate the apoptosis signals eventually. This study aims to explore the regulatory role of miR-194-5p in DOX-induced ER stress and cardiomyocyte apoptosis. Methods: H9c2 was treated with 2 µM DOX to induce apoptosis, which is to stimulate the DOX-induced cardiotoxicity model. The expression of miR-194-5p was detected by quantitative real-time PCR (qRT-PCR); the interaction between miR-194-5p and P21-activated kinase 2 (PAK2) was tested by dual luciferase reporter assay; terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and caspase-3/7 activity were used to assess apoptosis; trypan blue staining was applied to measure cell death; Western blotting was performed to detect protein expressions; and ER-related factors splicing X-box binding protein 1 (XBP1s) was detected by polyacrylamide gel electrophoresis and immunofluorescence to verify the activation of ER stress. Results: MiR-194-5p was upregulated in cardiomyocytes and mouse heart tissue with DOX treatment, while the protein level of PAK2 was downregulated. PAK2 was predicted as the target of miR-194-5p; hence, dual luciferase reporter assay indicated that miR-194-5p directly interacted with PAK2 and inhibited its expression. TUNEL assay, caspase-3/7 activity test, and trypan blue stain results showed that either inhibition of miR-194-5p or overexpression of PAK2 reduced DOX-induced cardiomyocyte apoptosis. Silencing of miR-194-5p also improved DOX-induced cardiac dysfunction. In addition, DOX could induce ER stress in H9c2, which led to XBP1 and caspase-12 activation. The expression level of XBP1s with DOX treatment increased first then decreased. Overexpression of XBP1s suppressed DOX-induced caspase-3/7 activity elevation as well as the expression of cleaved caspase-12, which protected cardiomyocyte from apoptosis. Additionally, the activation of XBP1s was regulated by miR-194-5p and PAK2. Conclusion: Our findings revealed that silencing miR-194-5p could alleviate DOX-induced cardiotoxicity via PAK2 and XBP1s in vitro and in vivo. Thus, the novel miR-194-5p/PAK2/XBP1s axis might be the potential prevention/treatment targets for cancer patients receiving DOX treatment.

18.
PLoS One ; 17(1): e0262775, 2022.
Article in English | MEDLINE | ID: mdl-35051233

ABSTRACT

OBJECTIVES: To investigate the effects of integrative neuromuscular training (INT) on physical performance in elite female table tennis players. METHODS: Twenty-four Chinese elite female table tennis players were randomized into either INT (n = 12) group or control group (CON; n = 12). INT group performed four INT sessions every week for 8 weeks, while CON group performed traditional physical fitness training. One repetition maximal (1RM), vertical jump, Y balance test and 30-meter sprinting performance were tested before and after intervention. RESULTS: No between groups differences were detected for any tests before intervention. Significant group by time (before or after intervention) interaction effects were observed in 1RM, vertical jump, bilateral lower limb reaching distance at posteromedial and posterolateral directions, and right leg at the anterior direction for the Y balance test (all p < 0.05), but not for the left leg at the anterior direction or the 30-meter sprinting performance (both p > 0.05). Post-hoc analysis for measurements with significant interactions revealed that all significant changes were at the ING group (all p < 0.05), while no changes for the CON group were observed (all p > 0.05). CONCLUSION: Eight weeks INT significantly improved strength, power and balance in Chinese elite female table tennis players. Adopting INT in table tennis players may improve their physical performance and lead to better sports performance.


Subject(s)
Athletes , Physical Fitness/physiology , Physical Functional Performance , Adult , China , Female , Humans , Young Adult
19.
Cytotherapy ; 24(2): 93-100, 2022 02.
Article in English | MEDLINE | ID: mdl-34742629

ABSTRACT

Small extracellular vesicles (sEVs) are generated by almost all cell types. They have a bilayer membrane structure that is similar to cell membranes. Thus, the phospholipids contained in sEVs are the main components of cell membranes and function as structural support elements. However, as in-depth research on sEV membrane components is conducted, some phospholipids have been found to participate in cellular biological processes and function as targets for cell-cell communication. Currently, sEVs are being developed as part of drug delivery systems and diagnostic factors for various diseases, especially neurodegenerative diseases and cancer. An understanding of the physiological and pathological roles of sEV phospholipids in cellular processes is essential for their future medical application. In this review, the authors discuss phospholipid components in sEVs of different origins and summarize the roles of phospholipids in sEV biogenesis. The authors further collect the current knowledge on the functional roles of sEV phospholipids in cell-cell communication and bioactivities as signals regulating neurodegenerative diseases and cancer and the possibility of using sEV phospholipids as biomarkers or in drug delivery systems for cancer diagnosis and treatment. Knowledge of sEV phospholipids is important to help us identify directions for future studies.


Subject(s)
Extracellular Vesicles , Neoplasms , Neurodegenerative Diseases , Drug Delivery Systems , Humans , Neurodegenerative Diseases/diagnosis , Phospholipids/therapeutic use
20.
Front Plant Sci ; 12: 786328, 2021.
Article in English | MEDLINE | ID: mdl-34917116

ABSTRACT

Transgenic technology is increasingly used in forest-tree breeding to overcome the disadvantages of traditional breeding methods, such as a long breeding cycle, complex cultivation environment, and complicated procedures. By introducing exogenous DNA, genes tightly related or contributed to ideal traits-including insect, disease, and herbicide resistance-were transferred into diverse forest trees, and genetically modified (GM) trees including poplars were cultivated. It is beneficial to develop new varieties of GM trees of high quality and promote the genetic improvement of forests. However, the low transformation efficiency has hampered the cultivation of GM trees and the identification of the molecular genetic mechanism in forest trees compared to annual herbaceous plants such as Oryza sativa. In this study, we reviewed advances in transgenic technology of forest trees, including the principles, advantages and disadvantages of diverse genetic transformation methods, and their application for trait improvement. The review provides insight into the establishment and improvement of genetic transformation systems for forest tree species. Challenges and perspectives pertaining to the genetic transformation of forest trees are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...