Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 170: 116089, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38157640

ABSTRACT

Hyperlipidaemia is described as "excessive phlegm" and "blood stasis" in the classic theory of traditional Chinese medicine. Exocarpium Citri Grandis has the effect of dispelling blood stasis and removing phlegm, which can better meet the treatment needs of this disease. However, there is still a lack of focus and depth in the study of the chemical composition of this medicine, and the correlation between the study of relevant medicinal substances and the efficacy of dispelling stasis and removing phlegm is insufficient. To address this issue, this study was carried out to validate the overall efficacy and identify and determine the chemical composition of Exocarpium Citri Grandis. The regulatory mechanism of the PXR-CYP3A4/FXR-LXRα pathway and its active ingredients were screened, and a pharmacokinetic study of active ingredients was performed. The obtained multidimensional data were statistically analysed and comprehensively evaluated. The quality marker of Exocarpium Citri Grandis in the treatment of hyperlipidaemia based on the PXR-CYP3A4/FXR-LXRα mechanism to exert the efficacy of dispelling blood stasis and removing phlegm was finally determined. Based on the above experiments, we identified 27 compounds from the ethanol extract of Exocarpium Citri Grandis. Among them, naringenin, meranzin hydrate, apigenin, caffeic acid phenethyl ester, anacardiin, hesperidin and naringin can significantly regulate all or part of the targets in the PXR-CYP3A4/FXR-LXRα pathway. It also has suitable content and pharmacokinetic characteristics in vivo. In conclusion, this study established quality markers to characterize the efficacy of Exocarpium Citri Grandis in dispelling blood stasis and removing phlegm, which provides a scientific basis for the targeted evaluation of the hypolipidaemic activity of this medicinal plant.


Subject(s)
Drugs, Chinese Herbal , Hesperidin , Hyperlipidemias , Plants, Medicinal , Cytochrome P-450 CYP3A , Hyperlipidemias/drug therapy , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacokinetics , Plants, Medicinal/chemistry , Medicine, Chinese Traditional
2.
Sci Rep ; 13(1): 22449, 2023 12 17.
Article in English | MEDLINE | ID: mdl-38105335

ABSTRACT

Jasminum elongatum (JE), an ethnic Chinese medicine, is widely used in the Lingnan region of China, because of its analgesic and antidiarrheal action, as well as its anti-inflammatory effects in gastrointestinal diseases. However, whether JE could against ulcerative colitis (UC) remains unclear. This research aims to reveal JE in treating UC and clarify the underlying mechanism. We used the 2.5% dextran sulfate sodium (DSS)-induced UC mice (C57BL/6J) to evaluate the therapeutic effects of JE. Metabolomics of serum and network pharmacology were combined to draw target-metabolite pathways. Apart from that, the targets of associated pathways were confirmed, and the mechanism of action was made clear, using immunohistochemistry. The pharmacodynamic results, including disease activity index (DAI), histological evaluation, and inflammatory cytokines in colon tissues, demonstrated that JE significantly relieved the physiological and pathological symptoms of UC. Network pharmacology analysis indicated 25 core targets, such as TNF, IL-6, PTGS2 and RELA, and four key pathways, including the NF-κB signaling pathway and arachidonic acid metabolism pathway, which were the key connections between JE and UC. Metabolomics analysis identified 45 endogenous differential metabolites and 9 metabolic pathways by enrichment, with the arachidonic acid metabolism pathway being the main metabolism pathway, consistent with the prediction of network pharmacology. IκB, p65 and COX-2 were identified as key targets and this study demonstrated for the first time that JE reverses 2.5% DSS-induced UC in mice via the IκB/p65/COX-2/arachidonic acid pathway. This study reveals the complex mechanisms underlying the therapeutic effects of JE on UC and provides a new approach to identifying the underlying mechanisms of the pharmacological action of Chinese natural medicines such as JE.


Subject(s)
Colitis, Ulcerative , Colitis , Jasminum , Animals , Mice , Mice, Inbred C57BL , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Arachidonic Acid , Cyclooxygenase 2 , Network Pharmacology , Colon , NF-kappa B , Dextran Sulfate/toxicity , Disease Models, Animal
3.
Front Pharmacol ; 14: 1252146, 2023.
Article in English | MEDLINE | ID: mdl-37964876

ABSTRACT

Hyperlipidemia is a disorder of lipid metabolism resulting from abnormal blood lipid metabolism and is one of the most frequent metabolic diseases that endanger people's health. Yinlan Tiaozhi capsule (YL) is a formulated TCM widely used to treat hyperlipidemia. The purpose of this study was to discover biomarkers utilizing untargeted metabolomics techniques, as well as to analyze the mechanisms underlying the changes in metabolic pathways linked to lipid-lowering, anti-inflammation, and regulation of angiogenesis in hyperlipidemia mice. To assess the efficacy of YL, serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c) levels were measured. Biochemical examinations showed that YL significantly reduced the levels of TC, TG, LDL-c, Il6, Tnf-α, and Vegfa in hyperlipidemia mice (p < 0.01). YL also significantly increased the levels of HDL-c and Alb (p < 0.01). Twenty-seven potential serum biomarkers associated with hyperlipidemia were determined. These differential metabolites were related to the reduction of serum lipid levels in hyperlipidemia mice, probably through metabolic pathways such as linoleic acid metabolism, glycerophospholipid metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and D-glutamine and D-glutamate metabolism. Further correlation analysis showed that the serum lipid reduction through YL was related to the metabolites (amino acid metabolites, phospholipids metabolites, and fatty acids metabolites). The present study reveals that YL has a profound effect on alleviating triton WR-1339-induced hyperlipidemia, inflammation, and angiogenesis and that the positive effects of YL were primarily associated with the correction of metabolic abnormalities and the maintenance of metabolite dynamic balance.

4.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4421-4428, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802868

ABSTRACT

This study aimed to provide scientific evidence for predicting quality markers(Q-markers) of Elephantopus scaber by establishing UPLC fingerprint of E. scaber from different geographical origins and determining the content of 13 major components, as well as conducting in vitro anti-cancer activity investigation of the main components. The chromatographic column used was Waters CORTECS UPLC C_(18)(2.1 mm×150 mm, 1.6 µm), and the mobile phase consisted of acetonitrile and 0.1% formic acid solution(gradient elution). The column temperature was set at 30 ℃, and the flow rate was 0.2 mL·min~(-1). The injection volume was 1 µL, and the detection wavelength was 240 nm. The UPLC fingerprint of E. scaber was fitted using the Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine(2012 edition) to determine common peaks, evaluate similarity, identify and determine the content of major components. The CCK-8 assay was used to explore the inhibitory effect of the main components on the proliferation of lung cancer cells. The results showed that in the established UPLC fingerprint of E. scaber, 35 common peaks were identified. Thirteen major components, including neochlorogenic acid(peak 1), chlorogenic acid(peak 2), cryptochlorogenic acid(peak 3), caffeic acid(peak 4), schaftoside(peak 6), galuteolin(peak 9), isochlorogenic acid B(peak 10), isochlorogenic acid A(peak 12), isochlorogenic acid C(peak 18), deoxyelephantopin(peak 28), isodeoxyelephantopin(peak 29), isoscabertopin(peak 31), and scabertopin(peak 32) were identified and quantified, and a quantitative analysis method was established. The results of the in vitro anti-cancer activity study showed that deoxyelephantopin, isodeoxyelephantopin, isoscabertopin, and scabertopin in E. scaber exhibited inhibition rates of lung cancer cell proliferation exceeding 80% at a concentration of 10 µmol·L~(-1), higher than the positive drug paclitaxel. These results indicate that the fingerprint of E. scaber is highly characteristic, and the quantitative analysis method is accurate and stable, providing references for the research on quality standards of E. scaber. Four sesquiterpene lactones in E. scaber show significant anti-cancer activity and can serve as Q-markers for E. scaber.


Subject(s)
Asteraceae , Drugs, Chinese Herbal , Lung Neoplasms , Humans , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Asteraceae/chemistry , Lung Neoplasms/drug therapy
5.
Sci Rep ; 13(1): 6424, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076581

ABSTRACT

Yinlan Tiaozhi capsule (YLTZC) has been widely used to treat hyperlipidemia (HLP). However, its material basis and underlying pharmacological effects remain unclean. The current study aimed to explore the mechanisms involved in the treatment of YLTZC on HLP based on network pharmacology, molecular docking, and experimental verification. Firstly, UPLC-Q-TOF-MS/MS was used to comprehensively analyze and identify the chemical constituents in YLTZC. A total of 66 compounds, mainly including flavonoids, saponins, coumarins, lactones, organic acids, and limonin were characterized and classified. Simultaneously, the mass fragmentation pattern of different types of representative compounds was further explored. By network pharmacology analysis, naringenin and ferulic acid may be the core constituents. The 52 potential targets of YLTZC, including ALB, IL-6, TNF, and VEGFA, were considered potential therapeutic targets. Molecular docking results showed that the core active constituents of YLTZC (naringenin and ferulic acid) have a strong affinity with the core targets of HLP. Lastly, animal experiments confirmed that naringenin and ferulic acid significantly upregulated the mRNA expression of ALB and downregulated the mRNA expression of IL-6, TNF, and VEGFA. In sum, the constituents of YLTZC, such as naringenin and ferulic acid, might treat HLP by regulating the mechanism of angiogenesis and inhibiting inflammatory responses. Furthermore, our data fills the gap in the material basis of YLTZC.


Subject(s)
Drugs, Chinese Herbal , Hyperlipidemias , Animals , Hyperlipidemias/drug therapy , Interleukin-6 , Molecular Docking Simulation , Network Pharmacology , Tandem Mass Spectrometry , RNA, Messenger , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
6.
Sci Rep ; 12(1): 6992, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484204

ABSTRACT

Bushao Tiaozhi Capsule (BSTZC) is a novel drug in China that is used in clinical practice and has significant therapeutic effects on hyperlipidemia (HLP). In our previous study, BSTZC has a good regulatory effect on lipid metabolism of HLP rats. However, its bioactive compounds, potential targets, and underlying mechanism remain largely unclear. We extracted the active ingredients and targets in BSTZC from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and literature mining. Subsequently, core ingredients, potential targets, and signaling pathways were determined through bioinformatics analysis, including constructed Drug-Ingredient-Gene symbols-Disease (D-I-G-D), protein-protein interaction (PPI), the Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, the reliability of the core targets was evaluated using in vivo studies. A total of 36 bioactive ingredients and 209 gene targets were identified in BSTZC. The network analysis revealed that quercetin, kaempferol, wogonin, isorhamnetin, baicalein and luteolin may be the core ingredients. The 26 core targets of BSTZC, including IL-6, TNF, VEGFA, and CASP3, were considered potential therapeutic targets. Furthermore, GO and KEGG analyses indicated that the treatment of HLP by BSTZC might be related to lipopolysaccharide, oxidative stress, inflammatory response and cell proliferation, differentiation and apoptosis. The pathway analysis showed enrichment for different pathways like MAPK signaling pathway, AGE-RAGE signaling pathway in diabetic, IL-17 signaling pathway and TNF signaling pathway. In this study, network pharmacology analysis, and experiment verification were combined, and revealed that BSTZC may regulate key inflammatory markers and apoptosis for ameliorating HLP.


Subject(s)
Drugs, Chinese Herbal , Hyperlipidemias , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Hyperlipidemias/drug therapy , Network Pharmacology , Protein Interaction Maps , Rats , Reproducibility of Results
7.
Food Sci Nutr ; 10(1): 21-38, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35035907

ABSTRACT

Cordyceps militaris (CM) is traditionally used as dietary therapy for lung cancer patients in China. CM extract (CME) is hydrosoluble fraction of CM and extensively investigated. Caspase-3-involved cell death is considered as its major anticancer mechanism but inconclusive. Therefore, we explore its caspase-3-dependent programmed cell death nature (apoptosis and pyroptosis) and validate its caspase-3-dependent property in loss-of-function experiment. Component profile of CME is detected by High Performance Liquid Chromatography- quadrupole time-of-flight mass spectrometry (HPLC-qTOF). Results show that CME causes pyroptosis-featured cell bubbling and cell lysis and inhibits cell proliferation in A549 cell. CME induces chromatin condensing and makes PI+/annexin V+ staining in bubbling cells, indicating genotoxicity, apoptosis, and pyroptosis cell death are caused by CME. High concentration of CME (200 µg/ml) exerts G2/M and G0 cell cycles arresting and suppresses P53-downstream proliferative proteins, including P53, P21, CDC25B, CyclinB1, Bcl-2, and BCL2 associated agonist of cell death (BAD), but 1-100 µg/ml of CME show less effect on proteins above. Correspondingly, caspase-3 activity and caspase-3 downstream proteins including pyroptotic effector gasdermin-E (GSDME) and apoptotic marker cleaved-poly-ADP-ribose polymerase (PARP) are significantly promoted by CME. Moreover, regarding membrane pore formation in pyroptotic cell, expression of membrane GSDME (GSDME antibody conjugated with PE-Cy7 for detection in flow cytometry) is remarkably increased by CME treatment. By contrast, other pyroptosis-related proteins such as P2X7, NLRP3, GSDMD, and Caspase-1 are not affected after CME treatment. Additionally, TET2 is unexpectedly raised by CME. In present of caspase-3 inhibitor Ac-DEVD-CHO (Ac-DC), CME-induced cytotoxicity, cell bubbling, and genotoxicity are reduced, and CME-induced upregulation of apoptosis (cleaved-PARP-1) and pyroptosis (GSDME-NT) proteins are reversed. Lastly, 22 components are identified in HPLC-qTOF experiment, and they are classified into trophism, neoadjuvant component, cytotoxic component, and cancer deterioration promoter according to previous references. Conclusively, CME causes caspase-3-dependent apoptosis and pyroptosis in A549 through caspase-3/PARP and caspase-3/GSDME pathways, and it provides basic insight into clinic application of CME for cancer patients.

8.
Biomed Res Int ; 2021: 6623912, 2021.
Article in English | MEDLINE | ID: mdl-34527739

ABSTRACT

Qianghuo Shengshi decoction (QHSSD) is a classical Chinese medicine formula, which is used in clinical practice for the treatment of rheumatoid arthritis (RA) in China. However, the pharmacological mechanism of QHSSD on RA has remained unclear by now. We collected and screened active compounds and its potential targets by the pharmacology platform of Chinese herbal medicines. In addition, the therapeutic targets of RA were obtained and selected from databases. Network construction analyzed that 128 active compounds may act on 87 candidate targets and identified a total of 18 hub targets. GO annotation and KEGG enrichment investigated that the action mechanism underlying the treatment of RA by QHSSD might be involved in cell proliferation, angiogenesis, anti-inflammation, and antioxidation. Finally, molecular docking verification showed that TP53, VEGFA, TNF, EGFR, and NOS3 may be related to the RA treatment and molecular dynamics simulation showed the stability of protein-ligand interactions. In this work, QHSSD might exert therapeutic effect through a multicomponent, multitarget, and multipathway in RA from a holistic aspect, which provides basis for its mechanism of action and subsequent experiments.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Drugs, Chinese Herbal/pharmacology , Arthritis, Rheumatoid/metabolism , China , Humans , Medicine, Chinese Traditional/methods , Molecular Docking Simulation
9.
Org Lett ; 22(2): 694-699, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31913642

ABSTRACT

A general intermolecular reductive Heck reaction of organohalides with both terminal and internal unactivated aliphatic alkenes has been first realized in high yield with complete anti-Markovnikov selectivity. The challenging vinyl bromides, aryl chlorides, and polysubstituted internal alkenes were first applied. More than 100 remote carbofunctionalized alkyl carboxylic acid derivatives were rapidly synthesized from easily accessible starting materials. The synthesis of drug molecules has further demonstrated the wide synthetic utility of this scalable strategy. Preliminary mechanistic studies are consistent with the proposed catalytic cycle.

10.
J Am Chem Soc ; 140(30): 9332-9336, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29925236

ABSTRACT

A general Pd-catalyzed intermolecular reductive Heck reaction of both terminal and internal unactivated aliphatic alkenes has been first developed. This method affords γ- and δ-arylated alkyl carboxylic acid derivatives in high yields with complete anti-Markovnikov selectivity. Notably, the coupling process is stereoretentive for the alkyl chain. Mechanistically, alkyl palladacycle intermediates stabilized by directing group and ligand, hydride species multigenerated from PS/TFA reductant, are two key factors that successfully promote the reaction and regioselectivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...