Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2402452, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691849

ABSTRACT

The in vivo fate of chemotherapeutic drugs plays a vital role in understanding the therapeutic outcome, side effects, and the mechanism. However, the lack of imaging abilities of drugs, tedious labeling processes, and premature leakage of imaging agents result in loss of fidelity between the drugs and imaging signals. Herein, an amphiphilic polymer is created by copolymerization of a near-infrared-II (NIR-II) fluorophore tracer (T) and an anticancer Pt(IV) prodrug (D) of cisplatin in a hand-holding manner into one polymer chain for the first time. The obtained PolyplatinDT is capable of delivering the drugs and the fluorophores concomitantly at a precise D/T ratio, thereby resulting in tracking the platinum drugs and even readout of them in real-time via NIR-II imaging. PolyplatinDT can self-assemble into nanoparticles, referred to as NanoplatinDT. Furthermore, a caspase-3 cleavable peptide that serves as an apoptosis reporter is attached to NanoplatinDT, resulting in NanoplatinDTR that are capable of simultaneously tracking platinum drugs and evaluating the therapeutic efficacy. Overall, it is reported here the design of the first theranostic polymer with anticancer drugs, drug tracers, and drug efficacy reporters that can work in concert to provide insight into the drug fate and mechanism of action.

2.
ACS Nano ; 18(17): 11217-11233, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38627234

ABSTRACT

Due to its intrinsic tumor-targeting attribute, limited immunogenicity, and cage architecture, ferritin emerges as a highly promising nanocarrier for targeted drug delivery. In the effort to develop ferritin cage-encapsulated cisplatin (CDDP) as a therapeutic agent, we found unexpectedly that the encapsulation led to inactivation of the drug. Guided by the structural information, we deciphered the interactions between ferritin cages and CDDP, and we proposed a potential mechanism responsible for attenuating the antitumor efficacy of CDDP encapsulated within the cage. Six platinum prodrugs were then designed to avoid the inactivation. The antitumor activities of these ferritin-platinum prodrug complexes were then evaluated in cells of esophageal squamous cell carcinoma (ESCC). Compared with free CDDP, the complexes were more effective in delivering and retaining platinum in the cells, leading to increased DNA damage and enhanced cytotoxic action. They also exhibited improved pharmacokinetics and stronger antitumor activities in mice bearing ESCC cell-derived xenografts as well as patient-derived xenografts. The successful encapsulation also illustrates the critical significance of comprehending the interactions between small molecular drugs and ferritin cages for the development of precision-engineered nanocarriers.


Subject(s)
Antineoplastic Agents , Cisplatin , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Ferritins , Prodrugs , Prodrugs/chemistry , Prodrugs/pharmacology , Humans , Ferritins/chemistry , Ferritins/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Mice , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Cisplatin/pharmacology , Cisplatin/chemistry , Drug Design , Platinum/chemistry , Platinum/pharmacology , Mice, Nude , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Drug Delivery Systems
3.
ACS Nano ; 18(17): 10979-11024, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38635910

ABSTRACT

Nanomaterials have attractive physicochemical properties. A variety of nanomaterials such as inorganic, lipid, polymers, and protein nanoparticles have been widely developed for nanomedicine via chemical conjugation or physical encapsulation of bioactive molecules. Superior to traditional drugs, nanomedicines offer high biocompatibility, good water solubility, long blood circulation times, and tumor-targeting properties. Capitalizing on this, several nanoformulations have already been clinically approved and many others are currently being studied in clinical trials. Despite their undoubtful success, the molecular mechanism of action of the vast majority of nanomedicines remains poorly understood. To tackle this limitation, herein, this review critically discusses the strategy of applying multiomics analysis to study the mechanism of action of nanomedicines, named nanomedomics, including advantages, applications, and future directions. A comprehensive understanding of the molecular mechanism could provide valuable insight and therefore foster the development and clinical translation of nanomedicines.


Subject(s)
Nanomedicine , Humans , Animals , Nanostructures/chemistry , Genomics
4.
ACS Nano ; 18(11): 7852-7867, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38437513

ABSTRACT

The clinical application of cisplatin (CisPt) is limited by its dose-dependent toxicity. To overcome this, we developed reduction-responsive nanoparticles (NP(3S)s) for the targeted delivery of a platinum(IV) (Pt(IV)) prodrug to improve efficacy and reduce the toxicity. NP(3S)s could release Pt(II) and hydrogen sulfide (H2S) upon encountering intracellular glutathione, leading to potent anticancer effects. Notably, NP(3S)s induced DNA damage and activated the STING pathway, which is a known promoter for T cell activation. Comparative RNA profiling revealed that NP(3S)s outperformed CisPt in enhancing T cell immunity, antitumor immunity, and oxidative stress pathways. In vivo experiments showed that NP(3S)s accumulated in tumors, promoting CD8+ T cell infiltration and boosting antitumor immunity. Furthermore, NP(3S)s exhibited robust in vivo anticancer efficacy while minimizing the CisPt-induced liver toxicity. Overall, the results indicate NP(3S)s hold great promise for clinical translation due to their low toxicity profile and potent anticancer activity.


Subject(s)
Antineoplastic Agents , Prodrugs , Prodrugs/chemistry , Cisplatin , Polymers , Glutathione , Cell Line, Tumor
5.
Adv Mater ; : e2311640, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38341667

ABSTRACT

Recent years have witnessed substantial progress in cancer immunotherapy, specifically T cell-based therapies. However, the application of T cell therapies has been primarily limited to hematologic malignancies, with limited success in the treatment of solid tumors. The main challenge in treating solid tumor is immune escape, which is characterized by reduced antigenicity, diminished immunogenicity, and the development of suppressive tumor immune microenvironments. To address these obstacles and restore T cell-mediated anti-tumor responses, a novel nanoparticle formulation known as PRA@Oxa-c16 is developed. This innovative approach combines retinoic acid and Pt(IV) to specifically target and overcome immune escape. Notably, the therapeutic efficacy of PRA@Oxa-c16 primarily relies on its ability to induce anti-tumor T cell responses, in contrast to the cytotoxicity associated with conventional chemotherapeutic agents. When combined with an immune checkpoint blockade, anti-programmed death-ligand 1 antibody, PRA@Oxa-c16 effectively eliminates solid tumors and induces immune memory responses, which prevent tumor metastasis and recurrence. This promising approach holds great potential for enhancing the treatment of solid tumors with T cell-based immunotherapy.

6.
Adv Sci (Weinh) ; 11(17): e2309624, 2024 May.
Article in English | MEDLINE | ID: mdl-38408124

ABSTRACT

Mild-heat photothermal antibacterial therapy avoids heat-induced damage to normal tissues but causes bacterial tolerance. The use of photothermal therapy in synergy with chemodynamic therapy is expected to address this issue. Herein, two pseudo-conjugated polymers PM123 with photothermal units and PFc with ferrocene (Fc) units are designed to co-assemble with DSPE-mPEG2000 into nanoparticle NPM123/Fc. NPM123/Fc under 1064 nm laser irradiation (NPM123/Fc+NIR-II) generates mild heat and additionally more toxic ∙OH from endogenous H2O2, displaying a strong synergistic photothermal and chemodynamic effect. NPM123/Fc+NIR-II gives >90% inhibition rates against MDR ESKAPE pathogens in vitro. Metabolomics analysis unveils that NPM123/Fc+NIR-II induces bacterial metabolic dysregulation including inhibited nucleic acid synthesis, disordered energy metabolism, enhanced oxidative stress, and elevated DNA damage. Further, NPM123/Fc+NIR-II possesses >90% bacteriostatic rates at infected wounds in mice, resulting in almost full recovery of infected wounds. Immunodetection and transcriptomics assays disclose that the therapeutic effect is mainly dependent on the inhibition of inflammatory reactions and the promotion of wound healing. What is more, thioketal bonds in NPM123/Fc are susceptible to ROS, making it degradable with highly favorable biosafety in vitro and in vivo. NPM123/Fc+NIR-II with a unique synergistic antibacterial strategy would be much less prone to select bacterial resistance and represent a promising antibiotics-alternative anti-infective measure.


Subject(s)
Anti-Bacterial Agents , Disease Models, Animal , Nanoparticles , Photothermal Therapy , Polymers , Wound Infection , Animals , Mice , Nanoparticles/chemistry , Polymers/chemistry , Polymers/pharmacology , Wound Infection/drug therapy , Anti-Bacterial Agents/pharmacology , Photothermal Therapy/methods
7.
Biochem Biophys Res Commun ; 696: 149483, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38219484

ABSTRACT

Highly cytotoxic maytansine derivatives are widely used in targeted tumor delivery. Structure-activity studies published earlier suggested the C9 carbinol to be a key element necessary to retain the potency. However, in 1984 a patent was published by Takeda in which the synthesis of 9-thioansamitocyn (AP3SH) was described and its activity in xenograft models was shown. In this article we summarize the results of an extended study of the anti-tumor properties of AP3SH. Like other maytansinoids, it induces apoptosis and arrests the cell cycle in the G2/M phase. It is metabolized in liver microsomes predominately by C3A4 isoform and doesn't inhibit any CYP isoforms except CYP3A4 (midazolam, IC50 7.84 µM). No hERG inhibition, CYP induction or mutagenicity in Ames tests were observed. AP3SH demonstrates high antiproliferative activity against 25 tumor cell lines and tumor growth inhibition in U937 xenograft model. Application of AP3SH as a cytotoxic payload in drug delivery system was demonstrated by us earlier.


Subject(s)
Antineoplastic Agents , Maytansine , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Cycle , Cell Division
8.
Adv Sci (Weinh) ; 11(4): e2300806, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37166035

ABSTRACT

Poor immunogenicity seriously hampers the broader implementation of antitumor immunotherapy. Enhanced immunogenicity capable of achieving greater antitumor immunity is urgently required. Here, a novel polymer that contains hydrophobic ferrocene (Fc) units and thioketal bonds in the main chain, which further delivered a prodrug of oxaliplatin and artesunate, i.e., Artoxplatin, to cancer cells is described. This polymer with Fc units in the nanoparticle can work as a polyigniter to spark the peroxide bonds in Artoxplatin and generate abundant reactive oxygen species (ROS) to kill cancers as nanobombig for cancer therapy. Moreover, ROS can trigger the breakdown of thioketal bonds in the polymer, resulting in the biodegradation of the polymer. Importantly, nanobombig can facilitate the maturation of dendritic cells and promote the activation of antitumor immunity, through the enhanced immunogenic cell death effect by ROS generated in situ. Furthermore, metabolomics analysis reveals a decrease in glutamine in nanobombig -treated cancer cells, resulting in the upregulation of programmed death ligand 1 (PD-L1). Consequently, it is further demonstrated enhanced tumor inhibitory effects when using nanobombig combined with anti-PD-L1 therapy. Overall, the nanosystem offers a rational design of an efficient chemo-immunotherapy regimen to promote antitumor immunity by improving tumor immunogenicity, addressing the key challenges cancer immunotherapy faced.


Subject(s)
B7-H1 Antigen , Ferrous Compounds , Neoplasms , Humans , B7-H1 Antigen/metabolism , Reactive Oxygen Species , Metallocenes , Neoplasms/drug therapy , Polymers
9.
Adv Mater ; 36(11): e2310456, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38092007

ABSTRACT

Pyroptosis, an emerging mechanism of programmed cell death, holds great potential to trigger a robust antitumor immune response. Platinum-based chemotherapeutic agents can induce pyroptosis via caspase-3 activation. However, these agents also enhance cyclooxygenase-2 (COX-2) expression in tumor tissues, leading to drug resistance and immune evasion in pancreatic cancer and significantly limiting the effectiveness of chemotherapy-induced pyroptosis. Here, an amphiphilic polymer (denoted as PHDT-Pt-In) containing both indomethacin (In, a COX-2 inhibitor) and platinum(IV) prodrug (Pt(IV)) is developed, which is responsive to glutathione (GSH). This polymer self-assemble into nanoparticles (denoted as Pt-In NP) that can disintegrate in cancer cells due to the GSH responsiveness, releasing In to inhibit the COX-2 expression, hence overcoming the chemoresistance and amplifying cisplatin-induced pyroptosis. In a pancreatic cancer mouse model, Pt-In NP significantly inhibit tumor growth and elicit both innate and adaptive immune responses. Moreover, when combined with anti-programmed death ligand (α-PD-L1) treatment, Pt-In NP demonstrate the ability to completely suppress metastatic tumors, transforming "cold tumors" into "hot tumors". Overall, the sustained release of Pt(IV) and In from Pt-In NP amplifies platinum-drug-induced pyroptosis to elicit long-term immune responses, hence presenting a generalizable strategy for pancreatic cancer.


Subject(s)
Nanoparticles , Pancreatic Neoplasms , Prodrugs , Animals , Mice , Prodrugs/pharmacology , Prodrugs/therapeutic use , Platinum , Cyclooxygenase 2 , Pyroptosis , Cisplatin/pharmacology , Nanoparticles/therapeutic use , Polymers , Pancreatic Neoplasms/drug therapy , Cell Line, Tumor
10.
Adv Mater ; 36(1): e2308762, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37849029

ABSTRACT

Both cisplatin-based chemotherapy and immune checkpoint blockers (ICBs)-based immunotherapy are the first-line treatments for patients with advanced bladder cancer. Cancer cells can develop resistance to cisplatin through extensive DNA repair, while a low response rate to ICBs is mostly due to the presence of an immunosuppressive microenvironment and low PD-L1 expression. Herein, a glutathione (GSH)-responsive nanoparticle (NP2) loaded with cisplatin prodrug (Pt (IV)) and WEE1 inhibitor (MK1775) is designed. NP2 can be triggered by GSH in cancer cells, and the released MK1775 can inhibit the activity of WEE1 protein, which ultimately increases DNA damage by cisplatin. Genome-wide RNA sequencing first reveals that NP2 can inhibit DNA repair machinery by interfering with the cell cycle and significantly activate the stimulator of interferon genes pathway. Tumor growth is significantly inhibited by NP2 in vivo. As innate and adaptive immune responses are stimulated, the immunosuppressive microenvironment is modified, and the "immune cold tumor" is transformed into an "immune hot tumor". In addition, NP2 can upregulate PD-L1 expression in tumor cells, thereby increasing the response rate of PD-L1 monoclonal antibody (αPD-L1) and eliciting long-term immune responses in both primary and metastatic tumors.


Subject(s)
Prodrugs , Urinary Bladder Neoplasms , Humans , Cisplatin/pharmacology , Platinum , B7-H1 Antigen/metabolism , Prodrugs/pharmacology , Urinary Bladder Neoplasms/drug therapy , DNA Damage , Immunotherapy , Tumor Microenvironment , Cell Line, Tumor , Protein-Tyrosine Kinases , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
11.
Adv Mater ; 36(7): e2306419, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37796042

ABSTRACT

Promoting innate immunity through pyroptosis induction or the cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) pathway activation has emerged as a potent approach to counteract the immunosuppressive tumor microenvironment and elicit systemic antitumor immunity. However, current pyroptosis inducers and STING agonists often suffer from limitations including instability, unpredictable side effects, or inadequate intracellular expression of gasdermin and STING. Here, a tumor-specific nanotheranostic platform that combines photodynamic therapy (PDT) with epigenetic therapy to simultaneously activate pyroptosis and the cGAS-STING pathway in a light-controlled manner is constructed. This approach involves the development of oxidation-sensitive nanoparticles (NP1) loaded with the photosensitizer TBE, along with decitabine nanomicelles (NP2). NP2 enables the restoration of STING and gasdermin E (GSDME) expression, while NP1-mediated PDT facilitates the release of DNA fragments from damaged mitochondria to potentiate the cGAS-STING pathway, and promotes the activation of caspase-3 to cleave the upregulated GSDME into pore-forming GSDME-N terminal. Subsequently, the released inflammatory cytokines facilitate the maturation of antigen-presentation cells, triggering T cell-mediated antitumor immunity. Overall, this study presents an elaborate strategy for simultaneous photoactivation of pyroptosis and the cGAS-STING pathway, enabling targeted photoimmunotherapy in immunotolerant tumors. This innovative approach holds significant promise in overcoming the limitations associated with existing therapeutic modalities and represents a valuable avenue for future clinical applications.


Subject(s)
Interferons , Neoplasms , Humans , Gasdermins , Pyroptosis , Theranostic Nanomedicine , Neoplasms/drug therapy , Epigenesis, Genetic , Nucleotidyltransferases , Tumor Microenvironment
12.
Adv Mater ; 36(14): e2310298, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38145801

ABSTRACT

Photodynamic therapy (PDT), as a new type of light-mediated reactive oxygen species (ROS) cancer therapy, has the advantages of high therapeutic efficiency, non-resistance, and less trauma than traditional cancer therapy such as surgery, radiotherapy, and chemotherapy. However, oxygen-dependent PDT further exacerbates tumor metastasis. To this end, a strategy that circumvents tumor metastasis to improve the therapeutic efficacy of PDT is proposed. Herein, a near-infrared light-activated photosensitive polymer is synthesized and branched the anti-metastatic ruthenium complex NAMI-A on the side, which is further assembled to form nanoparticles (NP2) for breast cancer therapy. NP2 can kill tumor cells by generating ROS under 808 nm radiation (NP2 + L), reduce the expression of matrix metalloproteinases (MMP2/9) in cancer cells, decrease the invasive and migration capacity of cancer cells, and eliminate cancer cells. Further animal experiments show that NP2 + L can inhibit tumor growth and reduce liver and lung metastases. In addition, NP2 + L can activate the immune system in mice to avoid tumor recurrence. In conclusion, a PDT capable of both preventing tumor metastasis and precisely hitting the primary tumor to achieve effective treatment of highly metastatic cancers is developed.


Subject(s)
Dimethyl Sulfoxide/analogs & derivatives , Nanoparticles , Organometallic Compounds , Photochemotherapy , Ruthenium Compounds , Animals , Mice , Reactive Oxygen Species/metabolism , Neoplasm Recurrence, Local/drug therapy , Nanoparticles/therapeutic use , Polymers , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use
13.
J Am Chem Soc ; 146(1): 1185-1195, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38148611

ABSTRACT

Patients treated with Pt-based anticancer drugs (PtII) often experience severe side effects and are susceptible to cancer recurrence due to the limited bioavailability of PtII and tumor-induced immunosuppression. The exposure of phosphatidylserine on the cell's outer surface induced by PtII results in profound immunosuppression through the binding of phosphatidylserine to its receptors on immune cells. Here, we report a novel approach for enhanced cancer chemoimmunotherapy, where a novel nuclear-targeting lipid PtIV prodrug amphiphile was used to deliver a small interfering RNA (siXkr8) to simultaneously amplify Pt-DNA adducts and reduce the level of exposure of phosphatidylserine. This drug delivery vehicle is engineered by integrating the PtIV prodrug with self-assembly performance and siXkr8 into a lipid nanoparticle, which shows tumor accumulation, cancer cell nucleus targeting, and activatable in a reduced microenvironment. It is demonstrated that nuclear-targeting lipid PtIV prodrug increases the DNA cross-linking, resulting in increased Pt-DNA adduct formation. The synergistic effects of the PtIV prodrug and siXkr8 contribute to the improvement of the tumor immune microenvironment. Consequently, the increased Pt-DNA adducts and immunogenicity effectively inhibit primary tumor growth and prevent tumor recurrence. These results underscore the potential of utilizing the nuclear-targeting lipid PtIV prodrug amphiphile to enhance Pt-DNA adduct formation and employing siXkr8 to alleviate immunosuppression during chemotherapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Prodrugs , Humans , Prodrugs/pharmacology , DNA Adducts , Phosphatidylserines , RNA, Small Interfering , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , RNA, Double-Stranded , Cell Line, Tumor , Cisplatin , Tumor Microenvironment
14.
Bioact Mater ; 33: 341-354, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38107603

ABSTRACT

Nitric oxide (NO) enhanced photodynamic therapy (PDT) is a promising approach to overcome drug tolerance and resistance to biofilm but is limited by its short excitation wavelengths and low yield of reactive oxygen species (ROS). Herein, we develop a compelling degradable polymer-based near-infrared II (NIR-II, 1000-1700 nm) photosensitizer (PNIR-II), which can maintain 50 % PDT efficacy even under a 2.6 cm tissue barrier. Remarkably, PNIR-II is synthesized by alternately connecting the electron donor thiophene to the electron acceptors diketopyrrolopyrrole (DPP) and boron dipyrromethene (BODIPY), where the intramolecular charge transfer properties can be tuned to increase the intersystem crossover rate and decrease the internal conversion rate, thereby stabilizing the NIR-II photodynamic rather than photothermal effect. For exerting a combination therapy to eradicate multidrug-resistant biofilms, PNIR-II is further assembled into nanoparticles (NPs) with a synthetic glutathione-triggered NO donor polymer. Under 1064 nm laser radiation, NPs precisely release ROS and NO that triggered by over-expressed GSH in the biofilm microenvironment, thereby forming more bactericidal reactive nitrogen species (RNS) in vitro and in vivo in the mice model that orderly destroy biofilm of multidrug-resistant Staphylococcus aureus cultures from clinical patients. It thus provides a new outlook for destroy the biofilm of deep tissues.

15.
Biomater Sci ; 12(1): 176-186, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37955583

ABSTRACT

The development of cationic polymers that simulate antimicrobial peptides to treat bacterial infections has received much research interest. In order to obtain polymers that can not only eradicate bacteria but also inhibit biofilm formation, without inducing bacterial drug resistance, a series of cationic polymers have been developed. Despite recent progress, the chemical structures of these polymers are stable, making them recalcitrant to biodegradation and metabolism within organisms, potentially inducing long-term toxicity. To overcome this limitation, herein, a novel strategy of designing biodegradable polyurethanes with tertiary amines and quaternary ammonium salts via condensation polymerization and post-functionalizing them is reported. These polymers were found to exhibit potent antibacterial activity against Staphylococcus aureus and Escherichia coli, effectively prevent the formation of Staphylococcus aureus biofilms, act quickly and effectively against bacteria and display no resistance after repeated use. In addition, the potent in vivo antibacterial effects of these antimicrobial polyurethanes in a mouse model with methicillin-resistant Staphylococcus aureus skin infection are demonstrated.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Mice , Animals , Polyurethanes/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Staphylococcal Infections/drug therapy , Biofilms , Polymers/chemistry , Microbial Sensitivity Tests
16.
Exploration (Beijing) ; 3(3): 20220171, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37933384

ABSTRACT

Diffuse alveolar damage (DAD) triggers neutrophilic inflammation in damaged tissues of the lung, but little is known about the distinct roles of tissue structural cells in modulating the recruitment of neutrophils to damaged areas. Here, by combining single-cell and spatial transcriptomics, and using quantitative assays, we systematically analyze inflammatory cell states in a mouse model of DAD-induced neutrophilic inflammation after aerosolized intratracheal inoculation with ricin toxin. We show that homeostatic resident fibroblasts switch to a hyper-inflammatory state, and the subsequent occurrence of a CXCL1-CXCR2 chemokine axis between activated fibroblasts (AFib) as the signal sender and neutrophils as the signal receiver triggers further neutrophil recruitment. We also identify an anatomically localized inflamed niche (characterized by a close-knit spatial intercellular contact between recruited neutrophils and AFib) in peribronchial regions that facilitate the pulmonary inflammation outbreak. Our findings identify an intricate interplay between hyper-inflammatory fibroblasts and neutrophils and provide an overarching profile of dynamically changing inflammatory microenvironments during DAD progression.

17.
Adv Sci (Weinh) ; 10(35): e2206932, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37939284

ABSTRACT

Photodynamic therapy (PDT) has been widely employed in tumor treatment due to its effectiveness. However, the tumor hypoxic microenvironment which is caused by abnormal vasculature severely limits the efficacy of PDT. Furthermore, the abnormal vasculature has been implicated in the failure of immunotherapy. In this study, a novel nanoparticle denoted as Combo-NP is introduced, composed of a biodegradable NIR II fluorescent pseudo-conjugate polymer featuring disulfide bonds within its main chain, designated as TPA-BD, and the vascular inhibitor Lenvatinib. Combo-NP exhibits dual functionality by not only inducing cytotoxic reactive oxygen species (ROS) to directly eliminate tumor cells but also eliciting immunogenic cell death (ICD). This ICD response, in turn, initiates a robust cascade of immune reactions, thereby augmenting the generation of cytotoxic T lymphocytes (CTLs). In addition, Combo-NP addresses the issue of tumor hypoxia by normalizing the tumor vasculature. This normalization process enhances the efficacy of PDT while concurrently fostering increased CTLs infiltration within the tumor microenvironment. These synergistic effects synergize to potentiate the photodynamic-immunotherapeutic properties of the nanoparticles. Furthermore, when combined with anti-programmed death-ligand 1 (PD-L1), they showcase notable inhibitory effects on tumor metastasis. The findings in this study introduce an innovative nanomedicine strategy aimed at triggering systemic anti-tumor immune responses for the treatment of Uveal melanoma.


Subject(s)
Nanoparticles , Photochemotherapy , Immune Checkpoint Inhibitors , Cell Line, Tumor , Polymers/chemistry , Immunotherapy , Nanoparticles/chemistry
18.
Adv Sci (Weinh) ; 10(33): e2302895, 2023 11.
Article in English | MEDLINE | ID: mdl-37807827

ABSTRACT

The cGAS-STING pathway, as a vital innate immune signaling pathway, has attracted considerable attention in tumor immunotherapy research. However, STING agonists are generally incapable of targeting tumors, thus limiting their clinical applications. Here, a photodynamic polymer (P1) is designed to electrostatically couple with 56MESS-a cationic platinum (II) agent-to form NPPDT -56MESS. The accumulation of NPPDT -56MESS in the tumors increases the efficacy and decreases the systemic toxicity of the drugs. Moreover, NPPDT -56MESS generates reactive oxygen species (ROS) under the excitation with an 808 nm laser, which then results in the disintegration of NPPDT -56MESS. Indeed, the ROS and 56MESS act synergistically to damage DNA and mitochondria, leading to a surge of cytoplasmic double-stranded DNA (dsDNA). This way, the cGAS-STING pathway is activated to induce anti-tumor immune responses and ultimately enhance anti-cancer activity. Additionally, the administration of NPPDT -56MESS to mice induces an immune memory effect, thus improving the survival rate of mice. Collectively, these findings indicate that NPPDT -56MESS functions as a chemotherapeutic agent and cGAS-STING pathway agonist, representing a combination chemotherapy and immunotherapy strategy that provides novel modalities for the treatment of uveal melanoma.


Subject(s)
Intercalating Agents , Nanoparticles , Animals , Mice , Platinum , Reactive Oxygen Species , Nucleotidyltransferases
19.
Adv Mater ; 35(52): e2305668, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37668998

ABSTRACT

Photodynamic therapy (PDT) and photothermal therapy (PTT) leverage reactive oxygen species (ROS) and control local hyperthermia by photosensitizer to perturb intracellular redox equilibrium, inducing DNA damage in both mitochondria and nucleus, activating the cGAS-STING pathway, ultimately eliciting antitumor immune responses. However, current photosensitizers are encumbered by limitations such as suboptimal tumor targeting, aggregation-caused quenching (ACQ), and restricted excitation and emission wavelengths. Here, this work designs novel nanoparticles based on aggregation-induced emission (AIE) photosensitizer (BODTPE) for targeted tumor therapy and near-infrared II fluorescence imaging (NIR-II FLI) with enhanced PDT/PTT effects. BODTPE is employed as a monomer, dibenzocyclooctyne (DBCO)-PEG2k -amine serving as an end-capping polymer, to synthesize a BODTPE-containing polymer (DBD). Further, through self-assembly, DBD and mPEG-DSPE2k combined to form nanoparticles (NP-DBD). Notably, the DBCO on the surface of NP-DBD can react with azide groups on cancer cells pretreated with Ac4 ManNAz through a copper-free click reaction. This innovative formulation led to targeted accumulation of NP-DBD within tumor sites, a phenomenon convincingly demonstrated in murine tumor models subjected to N-azidoacetylmannosamine-tetraacylated (Ac4 ManNAz) pretreatment. Significantly, NP-DBD exhibits a multifaceted effect encompassing PDT/PTT/NIR-II FLI upon 808 nm laser irradiation, thereby better activating the cGAS-STING pathway, culminating in a compelling tumor inhibition effect augmented by robust immune modulation.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Animals , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Polymers , Cell Line, Tumor
20.
Nanoscale Adv ; 5(18): 4758-4769, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37705793

ABSTRACT

Immunoadjuvants play a key role in enhancing the efficacy of therapeutic tumor vaccines for treating malignant and recurrent cancers. However, due to the bottleneck in the rational design and mechanistic understanding of novel adjuvants, currently available immunoadjuvants in clinical practice are very limited. To boost adjuvant design and development, herein we propose a surface topography regulatory strategy for constructing novel adjuvants with improved adjuvant properties. One of the licensed adjuvants with a well-defined molecular mechanism of immune activation, cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs), was used as the material framework. We constructed immunostimulatory CpG nanoparticles (CpG NPs) with different surface topographies by coordination-driven self-assembly between CpG ODNs and ferrous ions. These self-assembled CpG NPs combine the biological and physical activation abilities of innate immunity and can be used as adjuvants of tumor antigens for malignant tumor immunotherapy. The experimental results showed that these CpG NPs could rapidly enter innate immune cells and remold the tumor microenvironment (TME) to enhance anti-tumor immunotherapy via (i) inducing proinflammatory cytokine production; (ii) promoting the transformation of macrophages from immunosuppressed M2 types into immunoactivated M1 types; (iii) amplifying the antigen presentation of mature dendritic cells (DCs), and (iv) activating T cells in tumor sites. Among the prepared nanostructures, pompon-shaped nanoparticles (NPpo) showed the strongest adjuvant properties and anti-tumor immunotherapeutic effect as the adjuvant of ovalbumin in melanoma-bearing mice. Overall, this work provides an effective strategy for designing novel adjuvants for activating the immunosuppressed TME to enable better cancer immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...