Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36233970

ABSTRACT

In the present paper, the effect of mechanical ball milling time on the fretting wear of GCr15 steel balls at different displacement amplitudes is investigated. TiC powder coating was fabricated on the surface of GCr15 steel balls using various process times, and the fretting wear tests were conducted on an AISI 52100 steel disk with the applied force of 80 N. Additionally, various displacement amplitudes (10 µm, 20 µm, and 60 µm) were selected. Specimen attributes and wear scars were characterized using an inverted metallographic microscope, a microhardness tester, an X-ray diffractometry analyzer, a white light interferometer, and a scanning electron microscope. The results showed that thick and continuous coatings could be obtained at the milling time of 18 h. The specimens processed for a longer milling time demonstrated better fretting wear resistance, which we attribute to higher microhardness of the surface layer. The coefficient of friction and wear volume of specimens at each different displacement amplitude significantly decreased with increasing milling time. As the displacement amplitude increased, the three fretting states were: partial slip coordinated by elastic deformation; partial slip state coordinated by plastic deformation; and gross slip condition. Our observations indicate that mechanical ball milling could be an efficient approach to improve the fretting wear resistance of GCr15 steel balls.

2.
Materials (Basel) ; 15(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36295293

ABSTRACT

Selective laser melted (SLM) 316L stainless steel (SS) has been widely employed in the fields of designing and manufacturing components with complex shapes and sizes. However, the low yield strength, low ultimate tensile stress, and low hardness of SLM 316L SS components hinder its further application. In this work, the strengthening grinding process (SGP) was used to enhance the mechanical properties of SLM 316L SS. The microhardness, residual stress, microstructure, and tensile properties of all the samples were analyzed. The results demonstrate that the SGP induced higher compressive residual stress and microhardness, as well as higher tensile properties. The maximum hardness and residual stress reached 354.5 HV and -446 MPa, respectively, indicating that the SGP resulted in a plastic deformation layer over 150 µm. The possible mechanisms have been discussed in further detail. Compared to the untreated sample, the SGP sample shows a significant improvement in yield strength (YS), ultimate tensile stress (UTS), and elongation (EL), increasing 30%, 25.5%, and 99.1%, respectively. This work demonstrates that SGP treatment could be an efficient approach to simultaneously improving the strength and ductility of the SLM 316L SS, which makes it more suitable for engineering applications.

3.
Materials (Basel) ; 15(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36295444

ABSTRACT

This study used the strengthening grinding process (SGP) to treat the surface of 30CrMnSiA bearing steels. The effect of the jet angle of SGP on the tribological properties of 30CrMnSiA bearing steels under lubrication was investigated. The principle of enhancing wear resistance of 30CrMnSiA bearing steel ascribed to SGP was discussed in detail. The results showed that the lubrication properties and surface hardness of the 30CrMnSiA steels were enhanced due to the formation of numerous microscale microscope oil pockets on the surface layer and the grain refinement of the surface microstructures, resulting in a significant improvement in wear resistance. With the jet angle of SGP increased from 0° to 90°, the friction coefficient, the wear volume, and the specific wear rate were exhibited to reduce rapidly first, then reduce slowly, and then rise slowly. With the optimal parameters at the jet angle of 60°, compared with the control sample, the average friction coefficient was reduced from 0.2235 to 0.1609, and the wear volume and specific wear rate were reduced from 9.04 × 10-3 mm3 to 3.82 × 10-3 mm3 and from 15.13 × 10-3 mm2/N to 6.36 × 10-3 mm2/N, respectively. When the jet angle was 90°, the reduced wear resistance was mainly attributed to the excessive roughness that caused the oil coating on the surface to be severely damaged.

4.
Materials (Basel) ; 16(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36614692

ABSTRACT

The Ti6Al4V alloy has been widely used in aerospace equipment and medical devices. However, the poor wear resistance of the Ti6Al4V alloy hinders its further engineering application. In this study, the ultrasonic strengthening grinding process (USGP) and laser texturing process were employed to enhance the wear resistance of Ti6Al4V alloy. The frictional behavior of all samples was determined via a ball-on-disc friction and wear tester under dry conditions. The worn surface morphology, cross-sectional hardness, surface roughness, and microstructure were analyzed. The results demonstrated that the USGP induced high hardness, high dislocation density, and grain refinement, as well as improvements in the wear resistance of Ti6Al4V. Moreover, laser texture could enhance the capacity to capture wear debris and reduce wear probability. When combining the USGP and laser texturing process for the surface treatment of Ti6Al4V alloy, the lowest and most stable friction coefficients were obtained, as well as the best wear resistance. Compared to the polished sample, the steady stage friction coefficient of the sample treated by USGP and laser texturing process was remarkably decreased by 58%. This work demonstrates that combining the USGP and laser texturing process could be a promising solution for improving the wear resistance properties of Ti6Al4V alloy, which makes it more suitable for various engineering applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...