Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Environ Int ; 187: 108688, 2024 May.
Article in English | MEDLINE | ID: mdl-38685158

ABSTRACT

The phyllosphere, particularly the leaf surface of plants, harbors a diverse range of microbiomes that play a vital role in the functioning of terrestrial ecosystems. However, our understanding of microbial successions and their impact on functional genes during plant community development is limited. In this study, considering core and satellite microbial taxa, we characterized the phyllosphere microbiome and functional genes in various microhabitats (i.e., leaf litter, moss and plant leaves) across the succession of a plant community in a low-altitude glacier foreland. Our findings indicate that phyllosphere microbiomes and associated ecosystem stability increase during the succession of the plant community. The abundance of core taxa increased with plant community succession and was primarily governed by deterministic processes. In contrast, satellite taxa abundance decreased during plant community succession and was mainly governed by stochastic processes. The abundance of microbial functional genes (such as C, N, and P hydrolysis and fixation) in plant leaves generally increased during the plant community succession. However, in leaf litter and moss leaves, only a subset of functional genes (e.g., C fixation and degradation, and P mineralization) showed a tendency to increase with plant community succession. Ultimately, the community of both core and satellite taxa collaboratively influenced the characteristics of phyllosphere nutrient-cycling genes, leading to the diverse profiles and fluctuating abundance of various functional genes during plant community succession. These findings offer valuable insights into the phyllosphere microbiome and plant-microbe interactions during plant community development, advancing our understanding of the succession and functional significance of the phyllosphere microbial community.


Subject(s)
Microbiota , Plant Leaves , Plant Leaves/microbiology , Ecosystem , Plants/microbiology , Plant Development
2.
Sci Adv ; 10(13): eadk2152, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552018

ABSTRACT

The evolution of oxygen cycles on Earth's surface has been regulated by the balance between molecular oxygen production and consumption. The Neoproterozoic-Paleozoic transition likely marks the second rise in atmospheric and oceanic oxygen levels, widely attributed to enhanced burial of organic carbon. However, it remains disputed how marine organic carbon production and burial respond to global environmental changes and whether these feedbacks trigger global oxygenation during this interval. Here, we report a large lithium isotopic and elemental dataset from marine mudstones spanning the upper Neoproterozoic to middle Cambrian [~660 million years ago (Ma) to 500 Ma]. These data indicate a dramatic increase in continental clay formation after ~525 Ma, likely linked to secular changes in global climate and compositions of the continental crust. Using a global biogeochemical model, we suggest that intensified continental weathering and clay delivery to the oceans could have notably increased the burial efficiency of organic carbon and facilitated greater oxygen accumulation in the earliest Paleozoic oceans.

4.
Ying Yong Sheng Tai Xue Bao ; 35(1): 102-110, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38511446

ABSTRACT

Microorganisms are essential actors in the biogeochemical cycling of elements within terrestrial ecosystems, with significant influences on soil health, food security, and global climate change. The contribution of microbial anabolism-induced organic compounds is a non-negligible factor in the processes associated with soil carbon (C) storage and organic matter preservation. In recent years, the conceptual framework of soil microbial carbon pump (MCP), with a focus on microbial metabolism and necromass generation process, has gained widespread attention. It primarily describes the processes of soil organic C formation and stabilization driven by the metabolic activities of soil heterotrophic microorganisms, representing an important mechanism and a focal point in current research on terrestrial C sequestration. Here, we reviewed the progress in this field and introduced the soil MCP conceptual framework 2.0, which expands upon the existing MCP model by incorporating autotrophic microbial pathway for C sequestration and integrating the concept of soil mineral C pump. These advancements aimed to enrich and refine our understanding of microbial-mediated terrestrial ecosystem C cycling and sequestration mechanisms. This refined framework would provide theoretical support for achieving China's "dual carbon" goals.


Subject(s)
Carbon , Ecosystem , Carbon/chemistry , Soil/chemistry , Soil Microbiology , Carbon Cycle , Carbon Sequestration
5.
Environ Sci Technol ; 57(45): 17501-17510, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37921659

ABSTRACT

The mobility of chromium (Cr) is controlled by minerals, especially iron (oxyhydr)oxides. The influence of organic carbon (OC) on the mobility and fate of Cr(VI) during Fe(II)-induced transformation of iron (oxyhydr)oxide, however, is still unclear. We investigate how low-weight carboxyl-rich OC influences the transformation of ferrihydrite (Fh) and controls the mobility of Cr(VI/III) in reducing environments and how Cr influences the formation of secondary Fe minerals and the stabilization of OC. With respect to the transformation of Fe minerals, the presence of low-weight carboxyl-rich OC retards the growth of goethite crystals and stabilizes lepidocrocite for a longer time. With respect to the mobility of Cr, low-weight carboxyl-rich OC suppresses the Cr(III)non-extractable associated with Fe minerals, and this suppression is enhanced with increasing carboxyl-richness of OC and decreasing pH. The presence of Cr(III) mitigates the decrease in total C associated with Fe minerals and increases the Cnon-extractable especially for Fh organominerals made with carboxyl-rich OC. Our study sheds new light on the mobility and fate of Cr in reducing environments and suggests that there is a potential synergy between Cr(VI) remediation and OC stabilization.


Subject(s)
Carbon , Minerals , Oxidation-Reduction , Minerals/chemistry , Ferric Compounds/chemistry , Chromium/chemistry , Iron/chemistry , Oxides , Ferrous Compounds
6.
Nature ; 621(7978): 312-317, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37532941

ABSTRACT

The balance between degradation and preservation of sedimentary organic carbon (OC) is important for global carbon and oxygen cycles1. The relative importance of different mechanisms and environmental conditions contributing to marine sedimentary OC preservation, however, remains unclear2-8. Simple organic molecules can be geopolymerized into recalcitrant forms by means of the Maillard reaction5, although reaction kinetics at marine sedimentary temperatures are thought to be slow9,10. More recent work in terrestrial systems suggests that the reaction can be catalysed by manganese minerals11-13, but the potential for the promotion of geopolymerized OC formation at marine sedimentary temperatures is uncertain. Here we present incubation experiments and find that iron and manganese ions and minerals abiotically catalyse the Maillard reaction by up to two orders of magnitude at temperatures relevant to continental margins where most preservation occurs4. Furthermore, the chemical signature of the reaction products closely resembles dissolved and total OC found in continental margin sediments globally. With the aid of a pore-water model14, we estimate that iron- and manganese-catalysed transformation of simple organic molecules into complex macromolecules might generate on the order of approximately 4.1 Tg C yr-1 for preservation in marine sediments. In the context of perhaps only about 63 Tg C yr-1 variation in sedimentary organic preservation over the past 300 million years6, we propose that variable iron and manganese inputs to the ocean could exert a substantial but hitherto unexplored impact on global OC preservation over geological time.

7.
Nat Commun ; 14(1): 4226, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37454222

ABSTRACT

The role of microbial interactions and the underlying mechanisms that shape complex biofilm communities are poorly understood. Here we employ a microfluidic chip to represent porous subsurface environments and show that cooperative microbial interactions between free-living and biofilm-forming bacteria trigger active spatial segregation to promote their respective dominance in segregated microhabitats. During initial colonization, free-living and biofilm-forming microbes are segregated from the mixed planktonic inoculum to occupy the ambient fluid and grain surface. Contrary to spatial exclusion through competition, the active spatial segregation is induced by cooperative interactions which improves the fitness of both biofilm and planktonic populations. We further show that free-living Arthrobacter induces the surface colonization by scavenging the biofilm inhibitor, D-amino acids and receives benefits from the public goods secreted by the biofilm-forming strains. Collectively, our results reveal how cooperative microbial interactions may contribute to microbial coexistence in segregated microhabitats and drive subsurface biofilm community succession.


Subject(s)
Biofilms , Microbial Interactions , Porosity , Bacteria , Plankton
8.
Nat Commun ; 13(1): 2722, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35581283

ABSTRACT

Minerals are widely proposed to protect organic carbon from degradation and thus promote the persistence of organic carbon in soils and sediments, yet a direct link between mineral adsorption and retardation of microbial remineralisation is often presumed and a mechanistic understanding of the protective preservation hypothesis is lacking. We find that methylamines, the major substrates for cryptic methane production in marine surface sediment, are strongly adsorbed by marine sediment clays, and that this adsorption significantly reduces their concentrations in the dissolved pool (up to 40.2 ± 0.2%). Moreover, the presence of clay minerals slows methane production and reduces final methane produced (up to 24.9 ± 0.3%) by a typical methylotrophic methanogen-Methanococcoides methylutens TMA-10. Near edge X-ray absorption fine structure spectroscopy shows that reversible adsorption and occlusive protection of methylamines in clay interlayers are responsible for the slow-down and reduction in methane production. Here we show that mineral-OC interactions strongly control methylotrophic methanogenesis and potentially cryptic methane cycling in marine surface sediments.


Subject(s)
Geologic Sediments , Methane , Carbon/metabolism , Clay , Geologic Sediments/chemistry , Methane/metabolism , Methylamines
9.
mSystems ; 7(1): e0110721, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35014868

ABSTRACT

Enhancing soil phosphate solubilization is a promising strategy for agricultural sustainability, while little is known about the mechanisms of how microorganisms cope with differing phosphorus availability. Using a combination of genome-resolved metagenomics and amplicon sequencing, we investigated the microbial mechanisms involved in phosphorus cycling under three agricultural treatments in a wheat-maize rotation system and two natural reforestation treatments. Available soil phosphorus was the key factor shaping bacterial and fungal community composition and function across our agricultural and reforestation sites. Membrane-bound quinoprotein glucose dehydrogenase (PQQGDH) and exopolyphosphatases (PPX) governed microbial phosphate solubilization in agroecosystems. In contrast, genes encoding glycerol-3-phosphate transporters (ugpB, ugpC, and ugpQ) displayed a significantly greater abundance in the reforestation soils. The gcd gene encoding PQQGDH was found to be the best determinant for bioavailable soil phosphorus. Metagenome-assembled genomes (MAGs) affiliated with Cyclobacteriaceae and Vicinamibacterales were obtained from agricultural soils. Their MAGs harbored not only gcd but also the pit gene encoding low-affinity phosphate transporters. MAGs obtained from reforestation soils were affiliated with Microtrichales and Burkholderiales. These contain ugp genes but no gcd, and thereby are indicative of a phosphate transporter strategy. Our study demonstrates that knowledge of distinct microbial phosphorus acquisition strategies between agricultural and reforestation soils could help in linking microbial processes with phosphorus cycling. IMPORTANCE The soil microbiome is the key player regulating phosphorus cycling processes. Identifying phosphate-solubilizing bacteria and utilizing them for release of recalcitrant phosphate that is bound to rocks or minerals have implications for improving crop nutrient acquisition and crop productivity. In this study, we combined functional metagenomics and amplicon sequencing to analyze microbial phosphorus cycling processes in natural reforestation and agricultural soils. We found that the phosphorus acquisition strategies significantly differed between these two ecosystems. A microbial phosphorus solubilization strategy dominated in the agricultural soils, while a microbial phosphate transporter strategy was observed in the reforestation soils. We further identified microbial taxa that contributed to enhanced phosphate solubilization in the agroecosystem. These microbes are predicted to be beneficial for the increase in phosphate bioavailability through agricultural practices.


Subject(s)
Microbiota , Phosphorus , Phosphorus/metabolism , Soil , Soil Microbiology , Bacteria , Phosphates/metabolism
10.
Environ Microbiol ; 24(2): 752-761, 2022 02.
Article in English | MEDLINE | ID: mdl-33769668

ABSTRACT

Arsenic can be biomethylated to form a variety of organic arsenicals differing in toxicity and environmental mobility. Trivalent methylarsenite (MAs(III)) produced in the methylation process is more toxic than inorganic arsenite (As(III)). MAs(III) also serves as a primitive antibiotic and, consequently, some environmental microorganisms have evolved mechanisms to detoxify MAs(III). However, the mechanisms of MAs(III) detoxification are not well understood. In this study, we identified an arsenic resistance (ars) operon consisting of three genes, arsRVK, that contribute to MAs(III) resistance in Ensifer adhaerens ST2. ArsV is annotated as an NADPH-dependent flavin monooxygenase with unknown function. Expression of arsV in the arsenic hypersensitive Escherichia coli strain AW3110Δars conferred resistance to MAs(III) and the ability to oxidize MAs(III) to MAs(V). In the presence of NADPH and either FAD or FMN, purified ArsV protein was able to oxidize both MAs(III) to MAs(V) and Sb(III) to Sb(V). Genes with arsV-like sequences are widely present in soils and environmental bacteria. Metagenomic analysis of five paddy soils showed the abundance of arsV-like sequences of 0.12-0.25 ppm. These results demonstrate that ArsV is a novel enzyme for the detoxification of MAs(III) and Sb(III) and the genes encoding ArsV are widely present in soil bacteria.


Subject(s)
Arsenic , Arsenicals , Antimony , Arsenicals/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Flavins , Mixed Function Oxygenases , Soil
11.
Front Microbiol ; 13: 1052831, 2022.
Article in English | MEDLINE | ID: mdl-36713221

ABSTRACT

Microbial activity has shaped the evolution of the ocean and atmosphere throughout the Earth history. Thus, experimental simulations of microbial metabolism under the environment conditions of the early Earth can provide vital information regarding biogeochemical cycles and the interaction and coevolution between life and environment, with important implications for extraterrestrial exploration. In this review, we discuss the current scope and knowledge of experimental simulations of microbial activity in environments representative of those of early Earth, with perspectives on future studies. Inclusive experimental simulations involving multiple species, and cultivation experiments with more constraints on environmental conditions similar to early Earth would significantly advance our understanding of the biogeochemical cycles of the geological past.

12.
Sci Total Environ ; 788: 147798, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34034165

ABSTRACT

A link between microbial life history strategies and soil organic carbon storage in agroecosystems is presumed, but largely unexplored at the gene level. We aimed to elucidate whether and how differential organic material amendments (manure versus peat-vermiculite) affect, relative to sole chemical fertilizer application, the link between microbial life history strategies and soil organic carbon storage in a wheat-maize rotation field experiment. To achieve this goal, we combined bacterial 16S rRNA gene and fungal ITS amplicon sequencing, metagenomics and the assembly of genomes. Fertilizer treatments had a significantly greater effect on microbial community composition than aggregate size, with soil available phosphorus and potassium being the most important community-shaping factors. Limitation in labile carbon was linked to a K-selected oligotrophic life history strategy (Gemmatimonadetes, Acidobacteria) under sole chemical fertilizer application; defined by a significant enrichment of genes involved in resource acquisition, polymer hydrolysis, and competition. By contrast, excess of labile carbon promoted an r-selected copiotrophic life history strategy (Cytophagales, Bacillales, Mortierellomycota) under manure treatment; defined by a significant enrichment of genes involved in cellular growth. A distinct life history strategy was not observed under peat-vermiculite treatment, but rather a mix of both K-selected (Acidobacteria) and r-selected (Actinobacteria, Mortierellomycota) microorganisms. Compared to sole chemical fertilizer application, soil organic carbon storage efficiency was significantly increased by 26.5% and 50.0% under manure and peat-vermiculite treatments, respectively. Taken together, our results highlight the importance of organic material amendments, but in particular a one-time peat-vermiculite application, to promote soil organic carbon storage as a potential management strategy for sustainable agriculture.


Subject(s)
Carbon , Soil , Agriculture , Fertilizers/analysis , Manure , RNA, Ribosomal, 16S , Rotation , Soil Microbiology , Triticum , Zea mays
13.
Environ Microbiol ; 23(2): 924-933, 2021 02.
Article in English | MEDLINE | ID: mdl-32827180

ABSTRACT

Autotrophic carbon dioxide (CO2 ) fixation by microbes is ubiquitous in the environment and potentially contributes to the soil organic carbon (SOC) pool. However, the multiple autotrophic pathways of microbial carbon assimilation and fixation in paddy soils remain poorly characterized. In this study, we combine metagenomic analysis with 14 C-labelling to investigate all known autotrophic pathways and CO2 assimilation mechanisms in five typical paddy soils from southern China. Marker genes of six autotrophic pathways are detected in all soil samples, which are dominated by the cbbL genes (67%-82%) coding the ribulose-bisphosphate carboxylase large chain in the Calvin cycle. These marker genes are associated with a broad range of phototrophic and chemotrophic genera. Significant amounts of 14 C-CO2 are assimilated into SOC (74.3-175.8 mg 14 C kg-1 ) and microbial biomass (5.2-24.1 mg 14 C kg-1 ) after 45 days incubation, where more than 70% of 14 C-SOC was concentrated in the relatively stable humin fractions. These results show that paddy soil microbes contain the genetic potential for autotrophic carbon fixation spreading over broad taxonomic ranges, and can incorporate atmospheric carbon into organic components, which ultimately contribute to the stable SOC pool.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Carbon Dioxide/metabolism , Carbon Isotopes/analysis , Soil Microbiology , Autotrophic Processes , Bacteria/chemistry , Bacteria/classification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon Cycle , Carbon Isotopes/metabolism , China , Isotope Labeling , Metagenome , Metagenomics , Photosynthesis , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Soil/chemistry
14.
ISME Commun ; 1(1): 46, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-37938635

ABSTRACT

Taxonomic convergence is common in bacterial communities but its underlying molecular mechanism remains largely unknown. We thus conducted a time-series transcriptional analysis of a convergent two-species synthetic community that grew in a closed broth-culture system. By analyzing the gene expression and monitoring the community structure, we found that gene expression mainly changed in the early stage, whereas community structure significantly changed in the late stage. The significant change of gene expression occurred even at the very beginning, which was designated as "0 h effect", suggesting the effect of species interaction on gene expression was inevitable. Besides, the effect of interaction on gene expression has a "population effect", which means that majority species have greater impact on gene expressions of minority species than vice versa. Furthermore, gene set enrichment analysis revealed that among a total of 63 unique pathways (occupying about 50% of all the metabolic pathways in both species), 40 (63%) were consistently suppressed, 16 (25%) were conditionally expressed, and only 7 (11%) were consistently activated. Overall, they were strictly regulated by both time and initial structures. Therefore, we proposed that microorganism responses and the induced gene expression changes play important roles in the process of community succession.

15.
Front Microbiol ; 8: 1198, 2017.
Article in English | MEDLINE | ID: mdl-28713339

ABSTRACT

Marine surface sediments, which are replete with sulfate, are typically considered to be devoid of endogenous methanogenesis. Yet, methanogenic archaea are present in those sediments, suggesting a potential for methanogenesis. We used an isotope dilution method based on sediment bag incubation and spiking with 13C-CH4 to quantify CH4 turnover rates in sediment from Aarhus Bay, Denmark. In two independent experiments, highest CH4 production and oxidation rates (>200 pmol cm-3 d-1) were found in the top 0-2 cm, below which rates dropped below 100 pmol cm-3 d-1 in all other segments down to 16 cm. This drop in overall methane turnover with depth was accompanied by decreasing rates of organic matter mineralization with depth. Molecular analyses based on quantitative PCR and MiSeq sequencing of archaeal 16S rRNA genes showed that the abundance of methanogenic archaea also peaked in the top 0-2 cm segment. Based on the community profiling, hydrogenotrophic and methylotrophic methanogens dominated among the methanogenic archaea in general, suggesting that methanogenesis in surface sediment could be driven by both CO2 reduction and fermentation of methylated compounds. Our results show the existence of elevated methanogenic activity and a dynamic recycling of CH4 at low concentration in sulfate-rich marine surface sediment. Considering the common environmental conditions found in other coastal systems, we speculate that such a cryptic methane cycling can be ubiquitous.

16.
Sci Rep ; 6: 34054, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27677458

ABSTRACT

A novel nitrate- and selenite reducing bacterium strain ZYKT was isolated from a rice paddy soil in Dehong, Yunnan, China. Strain ZYKT is a facultative anaerobe and grows in up to 150, 000 ppm O2. The comparative genomics analysis of strain ZYKT implies that it shares more orthologues with B. subtilis subsp. subtilis NCIB 3610T (ANIm values, 85.4-86.7%) than with B. azotoformans NBRC 15712T (ANIm values, 84.4-84.7%), although B. azotoformans NBRC 15712T (96.3% 16S rRNA gene sequence similarity) is the closest Bacillus species according to 16S rRNA gene comparison. The major cellular fatty acids of strain ZYKT were iso-C14:0 (17.8%), iso-C15:0 (17.8%), and C16:0 (32.0%). The polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified aminophospholipid. Based on physiological, biochemical and genotypic properties, the strain was considered to represent a novel species of the genus Bacillus, for which the name Bacillus oryziterrae sp. nov. is proposed. The type strain is ZYKT (=DSM 26460T =CGMCC 1.5179T). Strain ZYKT can reduce nitrate to nitrite and ammonium and possesses metabolic genes for nitrate reduction including nar, nap and nrf. Biogenic selenium nanoparticles of strain ZYKT show a narrow size distribution and agree with the gaussian distribution. These selenium nanoparticles show significant dose-dependent inhibition of the lung cancer cell line H157, which suggests potential for application in cancer therapy.

17.
FEMS Microbiol Ecol ; 92(3)2016 Mar.
Article in English | MEDLINE | ID: mdl-26850156

ABSTRACT

Overuse and arbitrary discarding of antibiotics have expanded antibiotic resistance reservoirs, from gut, waste water and activated sludge, to soil, freshwater and even the ocean. Based on the structured Antibiotic Resistance Genes Database and next generation sequencing, metagenomic analysis was used for the first time to detect and quantify antibiotic resistance genes (ARGs) in paddy soils from South China. A total of 16 types of ARGs were identified, corresponding to 110 ARG subtypes. The abundances and distribution pattern of ARGs in paddy soil were distinctively different from those in activated sludge and pristine deep ocean sediment, but close to those of sediment from human-impacted estuaries. Multidrug resistance genes were the most dominant type (38-47.5%) in all samples, and the ARGs detected encompassed the three major resistance mechanisms, among which extrusion by efflux pumps was predominant. Redundancy analysis (RDA) showed that pH was significantly correlated with the distribution of ARG subtypes (P < 0.05). Our results provided a broad spectrum profile of ARGs in paddy soil, indicating that ARGs are widespread in paddy soils of South China.


Subject(s)
Bacteria/drug effects , Bacteria/genetics , Bacterial Proteins/genetics , Soil Microbiology , Wastewater/microbiology , Anti-Bacterial Agents/pharmacology , Bacteria/classification , Bacteria/isolation & purification , Bacterial Proteins/metabolism , China , Drug Resistance, Bacterial , High-Throughput Nucleotide Sequencing , Metagenomics , Sewage/microbiology
18.
Environ Pollut ; 211: 1-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26736050

ABSTRACT

Microbe-mediated arsenic (As) metabolism plays a critical role in global As cycle, and As metabolism involves different types of genes encoding proteins facilitating its biotransformation and transportation processes. Here, we used metagenomic analysis based on high-throughput sequencing and constructed As metabolism protein databases to analyze As metabolism genes in five paddy soils with low-As contents. The results showed that highly diverse As metabolism genes were present in these paddy soils, with varied abundances and distribution for different types and subtypes of these genes. Arsenate reduction genes (ars) dominated in all soil samples, and significant correlation existed between the abundance of arr (arsenate respiration), aio (arsenite oxidation), and arsM (arsenite methylation) genes, indicating the co-existence and close-relation of different As resistance systems of microbes in wetland environments similar to these paddy soils after long-term evolution. Among all soil parameters, pH was an important factor controlling the distribution of As metabolism gene in five paddy soils (p = 0.018). To the best of our knowledge, this is the first study using high-throughput sequencing and metagenomics approach in characterizing As metabolism genes in the five paddy soil, showing their great potential in As biotransformation, and therefore in mitigating arsenic risk to humans.


Subject(s)
Arsenic/metabolism , Bacteria/genetics , Genes, Microbial , Soil Microbiology , Soil Pollutants/metabolism , Arsenates , Arsenic/analysis , Arsenites , Bacteria/metabolism , Biotransformation , Genes, Bacterial , Humans , Methylation , Oryza , Soil/chemistry , Soil Pollutants/analysis
19.
Mol Biosyst ; 11(12): 3355-61, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26456389

ABSTRACT

Elemental selenium (Se) was recently found to exist as endogenous nanoparticles (i.e., SeNPs) in selenite-exposed cancer cells. By sequestrating critical intracellular proteins, SeNPs appear capable of giving rise to multiple cytotoxicity mechanisms including inhibition of glycolysis, glycolysis-dependent mitochondrial dysfunction, microtubule depolymerization and inhibition of autophagy. In this work, we reveal a dynamic equilibrium of endogenous SeNP assembly and disassembly in selenite-exposed H157 cells. Endogenous SeNPs are observed both in the cytoplasm and in organelles. There is an increase in endogenous SeNPs between 24 h and 36 h, and a decrease between 36 h and 72 h according to transmission electron microscopy results and UV-Vis measurements. These observations imply that elemental Se in SeNPs could be oxidized back into selenite by scavenging superoxide radicals and ultimately re-reduced into selenide; then the assembly and disassembly of SeNPs proceed simultaneously with the sequestration and release of SeNP high-affinity proteins. There is also a possibility that the reduction of elemental Se to selenide pathway may lie in selenite-exposed cancer cells, which results in the assembly and disassembly of endogenous SeNPs. Genome-wide expression analysis results show that endogenous SeNPs significantly altered the expression of 504 genes, compared to the control. The endogenous SeNPs induced mitochondrial impairment and decreasing of the annexin A2 level can lead to inhibition of cancer cell invasion and migration. This dynamic flux of endogenous SeNPs amplifies their cytotoxic potential in cancer cells, thus provide a starting point to design more efficient intracellular self-assembling systems for overcoming multidrug resistance.


Subject(s)
Metal Nanoparticles , Neoplasms/metabolism , Selenious Acid/pharmacology , Selenium , Annexin A2/metabolism , Biological Transport , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Neoplasms/genetics , Neoplasms/ultrastructure , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , Protein Binding , Selenium/chemistry
20.
Asian Pac J Trop Med ; 8(7): 565-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26276289

ABSTRACT

OBJECTIVE: To observe the effect of subarachnoid nerve block anesthesia on glutamate transporter glutamate-aspartate transporter (GLAST) and GLT-1 expressions in rabbits, and to investigate the effect of peripheral nerve anesthesia on the morphology and function of the spinal cord. METHODS: Twenty healthy New Zealand white rabbits were randomly divided into two groups: the experimental group and control group; with 10 rabbits in each group. For spinal nerve anesthesia, 5 g/L of bupivacaine was used in the experimental group, and sterile saline was used in the control group. After 30 min of cardiac perfusion, GLAST and GLT-1 protein expression in spinal neurons were detected by immunohistochemistry and immunofluorescence staining. RESULTS: GLAST and GLT-1 protein-positive cells increased in neurons in the experimental group, compared with the control group (P < 0.05). CONCLUSIONS: After subarachnoid nerve block anesthesia, rabbit glutamate transporter GLAST and GLT-1 expression is increased; and spinal cord nerve cell function is inhibited.

SELECTION OF CITATIONS
SEARCH DETAIL
...