Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Chemosphere ; 355: 141731, 2024 May.
Article in English | MEDLINE | ID: mdl-38494003

ABSTRACT

The impact of ciprofloxacin (CIP) in the partial nitrification and anammox biofilm system was investigated by multivariate analysis, focusing on size-fractionated organic components. The CIP dose of 10 µg/L did not inhibit the total nitrogen (TN) removal efficiency, even though the abundance of antibiotic resistant genes (ARGs) (i.e., qnrD, qnrB, qnrA, qnrS, and arcA) was elevated. However, a gradual higher CIP dosing up to 100 µg/L inhibited the TN removal efficiency, while the abundance of ARGs was still increased. Moreover, both the TN removal efficiency and the abundant ARGs were dwindled at 470 µg/L of CIP. As the CIP dose increased from 0 to 100 µg/L, the abundance of high molecular weight (MW) fractions (14,000 to 87,000 Da; 1000 to 14,000 Da) and humic/fulvic acid-like components in the soluble extracellular polymeric substances (HSS) decreased, with more increases of low MW (84-1000 Da; less than 84 Da) fractions and soluble microbial by-products in soluble extracellular polymeric substances (SMPS). Continuously increasing the CIP dose till 470 µg/L, an inverse trend of the changes of these organic components was noted, along with clear reductions of the microbial diversity and richness, and the abundance of key functional genes responsible for nitrogen removal. The predominance of functional gene amoA (related with ammonia oxidizing bacteria) was more significantly with more distribution of SMPS with relatively low MW and less distribution of HSS with relatively high MW, as well as polymer decomposing microorganisms such as Bryobacteraceae and the unclassified Saprospirales.


Subject(s)
Ciprofloxacin , Nitrification , Ciprofloxacin/pharmacology , Anaerobic Ammonia Oxidation , Anti-Bacterial Agents/pharmacology , Biofilms , Bioreactors , Nitrogen , Sewage , Oxidation-Reduction , Denitrification
2.
Chemosphere ; 355: 141818, 2024 May.
Article in English | MEDLINE | ID: mdl-38548085

ABSTRACT

Skeleton builders were normally deemed to improve the high porosity and newly-generated permeability of sludge cakes by building water transfer channel during high pressure filtration, thus enhancing sludge dewaterability. However, currently a direct visualization proof of water transfer channel was still lacking. This study provided the direct proof for visualizing water transfer channel in dewatered sludge cakes conditioned with a typical skeleton builder (i.e., phosphogypsum (PG)) by X-ray micro-computed tomography (micro-CT) for the first time. After the addition of PG, the pixel value and image luminance increased significantly, indicating the presence of high density substances from both two-dimensional (2D) cross section and three-dimensional (3D) reconstruction CT images. Moreover, the CT numbers showed strong and negative correlations with specific resistance to filtration (SRF) (R = - 0.99, p < 0.05), capillary suction time (CST) (regression coefficient (R) = - 0.87, probability (p) < 0.05), and water content of the dewatered sludge cake (R = - 0.99, p < 0.05), respectively. These results indicated that the X-ray micro-CT could be a potential technique for analyzing the water distribution in sludge samples conditioned with skeleton builders.


Subject(s)
Calcium Sulfate , Filtration , Phosphorus , Sewage , X-Ray Microtomography , Water , Skeleton , Waste Disposal, Fluid/methods
3.
Environ Res ; 248: 118168, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38220073

ABSTRACT

This study investigated degradation kinetics of five selected organic micropollutants (OMPs) present in poultry litter (namely: sulfadiazine, tetracycline, and doxycycline hyclate (antibiotics); estrone and 17-ß-estradiol (hormones)) during hydrothermal carbonization (HTC) treatment as the temperature stepwise increased to 250 °C. All five pure OMPs were completely degraded before 250 °C was reached during the HTC process. Nevertheless, presence of poultry litter slowed down the degradation of OMPs. Through elemental mass balance calculation, it is noted that after 15 min (temperature less than 137 °C), 69-82% of organic carbon and 50-66% of organic nitrogen initially consisting part of the target antibiotics were fully mineralized. Both HTC filtrates and hydrochars obtained from poultry litter inhibited Escherichia coli and Bacillus subtilis growth. A combination of high salinity, high nutrients, dissolved organic carbon, and other ions in the filtrate as well as the adsorption of OMPs on hydrochars were probably the reason for the high toxicity.


Subject(s)
Anti-Bacterial Agents , Poultry , Animals , Carbon , Temperature , Estradiol
4.
Water Res ; 243: 120336, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37454458

ABSTRACT

A comparative study of the different advanced oxidation processes (Fe(II)-Oxone, Fe(II)-H2O2, and Fe(II)-NaClO) was carried out herein to analyze the characteristics of organic components and the migration of heavy metals in waste activated sludge. With the Fe(II)-Oxone and Fe(II)-H2O2 treatments, sludge dewaterability was significantly improved, however, sludge dewaterability was deteriorated by the Fe(II)-NaClO treatment. The enhanced sludge dewaterability by the Fe(II)-Oxone and Fe(II)-H2O2 treatments was strongly correlated with the shifted organic components, particularly proteins, in soluble extracellular polymeric substances (S-EPS), while the deteriorated sludge dewaterability by the Fe(II)-NaClO treatment was strongly correlated with the over release of organic components from bound EPS (B-EPS) to S-EPS. For both the Fe(II)-Oxone and Fe(II)-H2O2 treatments, the radicals preferentially attacked humic acid-like organic components over the protein-like organic components in S-EPS, while for the Fe(II)-NaClO treatment, interestingly, the radicals preferentially attacked the protein-like organic components in both S-EPS and B-EPS. The hydrophilic functional groups like phenolic OH and CO of polysaccharides may be more preferentially migrated to S-EPS of sludge by the Fe(II)-NaClO treatment compared to the other two treatments. With the Fe(II)-Oxone and Fe(II)-H2O2 treatments, the proportion of aliphatic compounds as well as the much oxygenated organic components with a low desaturation and a low molecular weight increased. While with the Fe(II)-NaClO treatment, the proportion of low oxygenated organic components with a high desaturation and a high molecular weight increased. The concentration of total organic carbon, particularly the concentration of proteins, may be the key factor determining the shift of Zn and Cu from sludge solid to liquid phase, along with the high oxidation extent of organic components and close binding to CHOS and CHON compounds as indicated by density functional theory (DFT) calculation. This study systematically revealed the simultaneous sludge dewatering and migration of heavy metals when the role of organic components was factored into herein.


Subject(s)
Metals, Heavy , Sewage , Sewage/chemistry , Hydrogen Peroxide/chemistry , Waste Disposal, Fluid/methods , Water/chemistry , Oxidation-Reduction , Spectrum Analysis , Proteins , Ferrous Compounds/chemistry
5.
Water Res ; 233: 119769, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36841170

ABSTRACT

A sustainable strategy for P recovery from sewage sludge via alkali-activated pyrolysis, water leaching and crystallization was proposed, and a high value-added product of vivianite was recovered. Effects of the type and dose of alkali activator on P transformation during sludge pyrolysis were investigated. 50 wt% dose of KHCO3 was determined as the alkali-activated pyrolysis condition. The content of water-soluble P (referred to as Water-P) in biochar derived from raw sludge (referred to as RS) and ferric sludge (Fenton's reagent conditioned sludge, referred to as FS) by KHCO3-activated pyrolysis at different temperatures was compared. The Fe element in the Fenton's reagent enhanced the content of Fe-bound P in the dewatered sludge, which was readily transformed into potassium phosphate during KHCO3-activated pyrolysis, thus increasing the Water-P content in the biochar derived from FS. The proportions of Water-P to total P in the biochar samples obtained by KHCO3-activated pyrolysis of RS and FS at 600 °C were 72.5% and 96.2%, respectively, which were notably higher than those in the biochar samples obtained by direct pyrolysis of RS and FS (3.5% and 0.5%), respectively. The water leaching solution of biochar obtained by KHCO3-activated pyrolysis of FS at 600 °C was purified to remove impurity elements, and vivianite with high purity was finally recovered by crystallization. A total P recovery efficiency of 88.08% was achieved throughout the process from sewage sludge to the final vivianite product. This study proposes a promising and sustainable approach for realizing the recovery of high value-added product vivianite from sewage sludge.


Subject(s)
Phosphorus , Sewage , Phosphorus/chemistry , Sewage/chemistry , Alkalies , Crystallization , Water , Pyrolysis , Charcoal/chemistry
6.
Waste Manag ; 156: 118-129, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36462342

ABSTRACT

Ventilation is an efficient approach employed for accelerating stabilization and reducing aftercare of landfill, but its effect on leachate reduction is still elusive. To fill this knowledge gap, five lab-scale landfill reactors with different ventilation rates were established in this study. Suitable ventilation (e.g. 0.25-0.5 L·min-1·kg-1 dry solid of waste (DS)) was beneficial to promoting the stabilization of landfill, which effectively accelerated the degradation of organic matter and reduced water content of landfilled waste. Based on the mass balance of water, the dominant input water was initial water of landfilled waste (more than 94 %), which was partially converted to leachate and evaporated water. Ventilation enhanced the intensity of biochemical reactions heat to increase evaporated water content from 0 to 0.29 t/t DS while reducing the leachate generation significantly from 0.69 to 0.49 t/t DS with the increase of ventilation rate. Besides, the hydrophilic substances, such as humic acid-like substances, in landfilled waste increased, and the surface of the landfilled waste converted from smooth to rough. The reduction of the bound water content has a significant correlation with the degradation of organic matter content (p less than 0.05), which reduced the water-holding capacity of waste. Actinobacteriota and Firmicutes were the key bacterial phyla in the degradation of organic matter to promote bio-heat and evaporation of water, thus reducing leachate production under suitable ventilation conditions. Carbohydrates and amino acids were the main energy metabolism sources of bacteria during the landfill process. This study deepens our understanding of the leachate reduction mechanism in the micro-aerobic landfill.


Subject(s)
Microbiota , Refuse Disposal , Water Pollutants, Chemical , Wastewater , Water/chemistry , Bioreactors , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , Bacteria , Solid Waste/analysis
7.
Bioresour Technol ; 364: 128109, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36244602

ABSTRACT

This study investigated the effects of electrical signaling disruption induced by adding tetraethylammonium (TEA, a potassium channel blocker) on the formation of mixed-cultured electroactive biofilms, especially the relative abundance of Geobacter over time. Results showed that TEA addition decelerated the biofilm formation, but selectively enriched Geobacter over time (45.8% on Day 32, 67.7% on Day 60 and 78.1% on Day 90), thus resulting in higher final extracellular electron transfer (EET) efficiency. Redundancy analysis (RDA) confirmed that TEA and operation time were significant factors for the selective enrichment of Geobacter. Moreover, increase in cellular processes and signal processing by PICRUSt analysis indicated adaptive responses of electrogenic biofilms to electrical signaling disruption. Furthermore, qRT-PCR indicated the compensatory roles of key cytochromes and pilA in electrochemical communication, which induced Geobacter enrichment. This work provided a broader understanding of electroactive biofilm regulation and potential applications for electricity generation and biosensor in the future.

8.
Environ Res ; 214(Pt 3): 114032, 2022 11.
Article in English | MEDLINE | ID: mdl-35952741

ABSTRACT

Here the role of microplastic size on dissolved organic matter, leaching compounds and microbial community during anaerobic sludge digestion was evaluated. Compared to that without the addition of polyvinyl chloride (PVC), during the 30 days' incubation, the anaerobic sludge digestion by adding PVC at the size of 75 µm and the concentration of 2.4 g/g volatile solids (VS) showed a 8.5% lower cumulative methane production, while a 17.9% higher cumulative methane production was noted by adding PVC at the size of 3000 µm and the concentration of 2.4 g/g VS. A long-term fed-batch laboratory-scale fermenter test for 147 days further testified, that higher removal efficiencies of total solids, volatile solids, and total chemical oxygen demand, and higher methane production were noted by adding PVC (2.4 g/g VS, 3000 µm) into the fermenter. More interestingly, higher concentrations of proteins, polysaccharides, volatile fatty acids, and soluble microbial by-products component were noted in the liquid phase of sludge drawn from the fermenter added with PVC since the biomass therein showed higher efficiencies of solubilization, hydrolysis, acidification, and methanogenesis. Moreover, as identified from the fermenter added with PVC, dibutyl phthalate (DBP) was the most predominant leaching phthalates compound, although the biomass therein showed a 93.4% anaerobic biodegradability of DBP. The leaching of DBP drove the predominance of microbial community towards Synergistota and Methanosaeta. More irregular elliptical shallow dimples were noted on the PVC surface after 147 days' incubation, accompanied with abundances of Proteobacteria, Actinobacteriota, Chloroflexi, Methanosaeta and Methanobacterium. The results from this study showed that the size of microplastic was a crucial factor in evaluating its impact on anaerobic sludge digestion.


Subject(s)
Microbiota , Sewage , Anaerobiosis , Bioreactors , Digestion , Dissolved Organic Matter , Methane , Microplastics , Plastics , Polyvinyl Chloride , Sewage/chemistry
9.
Waste Manag ; 150: 290-300, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35872333

ABSTRACT

A novel mechanochemically assisted persulfate activation method was proposed in this study to enhance the leaching of valuable metals from lithium-ion batteries by combining ball-milling, advanced oxidation processes and sucrose reduction. By optimizing leaching parameters including temperature, pH, milling time and solid-to-liquid ratio, high leaching efficiencies of 97.1%, 94.0%, 87.6% and 93.8% can be achieved for Li, Ni, Co and Mn respectively. In the mechanochemical process, the breakage of covalent bonds in cathode material is facilitated by free radicals generated from zero valent iron activated ammonia persulfate as well as mechanochemical activation. To further explore the role of free radicals, the mechanism of ammonia persulfate activation by zero valent iron was elucidated, and SO4•- was identified as the dominant reactive oxygen species in the mechanochemical process. Meanwhile, the synergistic effect of mechanochemically driven crystal dissolution and sulfate radical facilitated bond cleavage was revealed by ab initio molecular dynamics simulation. Moreover, the released metal was reduced by sucrose to a lower valent state of high solubility to promote transfer to the aqueous phase during the subsequent leaching process with dilute sulfuric acid. In this work, the insight on the mechanism of mechanochemical processes strengthened by free radicals may provide an inspiration for the recovery of valuable metals from LIBs.


Subject(s)
Ammonia , Lithium , Electric Power Supplies , Ions , Iron , Metals/chemistry , Recycling/methods , Sucrose
10.
Sci Total Environ ; 838(Pt 4): 156612, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35690206

ABSTRACT

This study systematically evaluated phosphorus (P) solubilization from pyrochar and hydrochar derived from both raw sludge and iron-rich sludge. The data indicated, that an increase in thermal treatment temperature and the presence of iron promoted the accumulation of P in both pyrochar (derived at 300, 500, and 800 °C) and hydrochar (derived at 100, 200, and 280 °C). After incubating pyrochar and hydrochar with a phosphate solubilizing microorganism (PSM) (Pseudomonas aeruginosa) for 30 days, PSM significantly promoted the solubilization of P in pyrochar and hydrochar synthesized at low temperatures rather than those at high temperatures, with a 59 % increase for the pyrolysis of raw sludge at 300 °C than that pyrolyzed at 800 °C and a 62 % increase for the hydrothermal treatment of raw sludge at 100 °C than that treated at 280 °C. And the phenomena were more obvious on the char samples derived from iron-rich sludge. The mass balance of different P species in the solid and liquid phases indicated that after incubating with PSM for 30 days, NaOH-P was the main P solubilized from the solid phase of pyrochar and HCl-P was the main P solubilized from the solid phase of hydrochar. Considering P availability to plants, the preliminary economic analysis indicated that the hydrothermal treatment of iron-rich sludge at 100 °C showed the highest economic benefits for P recovery, with the net cost of 28.79 USD/ton wet sludge. This study was useful in giving novel insights into the reuse of char samples as P fertilizer, and also suggested the importance of Pseudomonas aeruginosa and other bacteria in sludge application, particularly in terms of P solubilization.


Subject(s)
Phosphorus , Sewage , Fertilizers/analysis , Iron , Phosphates , Phosphorus/analysis , Temperature
11.
Sci Total Environ ; 838(Pt 2): 156176, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35613646

ABSTRACT

Low concentrations of antibiotics can regulate the formation of electroactive biofilms, however, the underlying mechanisms, especially the composition and spatial distribution of extracellular polymeric substances (EPS) and their effects on extracellular electron transfer (EET) process, have not been fully deciphered. Here, the response of EPS of Geobacter sulfurreducens biofilm to low concentrations of tetracycline (µg L-1 to mg L-1) was explored, and the impact of such EPS variations on EET efficiency was further elucidated by transcriptomic analysis. Results showed that 0.05 mg L-1 of tetracycline achieved both beneficial quantitative and spatial regulation of redox-active proteins and non-conducting exopolysaccharides in EPS, while higher concentrations induced negative effects. Moreover, 1 mg L-1 of tetracycline upregulated multiple exopolysaccharide biosynthesis-related genes, indicating a stress response for cell-protection, while 0.05 mg L-1 of tetracycline upregulated most direct EET-related gene expressions, resulting in the promoted EET efficiency. Furthermore, 0.05 mg L-1 of tetracycline selectively enriched Geobacter (45.55% vs 19.55% in control, respectively) from mixed inoculum. This research provides a new insight of how antibiotics at low concentrations regulated EET process through modulation of EPS.


Subject(s)
Extracellular Polymeric Substance Matrix , Heterocyclic Compounds , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/toxicity , Biofilms , Electrons , Extracellular Polymeric Substance Matrix/metabolism , Tetracycline/metabolism , Transcriptome
12.
Chemosphere ; 293: 133608, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35033510

ABSTRACT

The role of humic substances (HS) during sludge treatment has been the focus in recent years. Quantification of HS in sludge dissolved organic matter (DOM) and the chemical and structural characterization of HS data are the prerequisite for understanding their role during different sludge treatment processes. Currently, a number of published articles inadequately acknowledge fundamental principles of analysis methods both in terms of experimental approach and data analysis. Therefore, a more comprehensive and detailed description of the experimental methods and the data analysis are needed. In this study, the current used methods for HS quantification in DOM of sludge had been tested for different calibration and sludge DOM samples. The results indicated that the current methods showed overestimated and contradictory results for HS quantification in sludge DOM. To be specific, using the modified Lowry method, different values were obtained depending on the humic acids used for calibration, and false negative results were observed for some sludge samples. By using the relative amount of HS (based on dissolved organic carbon (DOC)) to total sludge DOM (based on DOC), variations among the results of different analysis methods for the same sample were high. According to the calculated Bray-Curtis dissimilarity indexes, the results for HS quantification obtained by three-dimensional excitation emission matrix (3D-EEM), either with spectra analysis methods by peak picking, fluorescence region integration (both region volume and area integration), or PARAllel FACtor analysis showed higher degrees of dissimilarity to those quantified by size exclusion liquid chromatography or XAD-8 method. The selection of fluorescence regions for HS seemed to be the determining factor for overestimation obtained by the 3D-EEM technique. In future work, strategies, like a consistent terminology of HS, the use of an internal standard sample, and the related standardized operation for HS quantification in sludge DOM need to be established.


Subject(s)
Humic Substances , Sewage , Dissolved Organic Matter , Factor Analysis, Statistical , Humic Substances/analysis , Spectrometry, Fluorescence/methods
13.
Environ Res ; 204(Pt C): 112223, 2022 03.
Article in English | MEDLINE | ID: mdl-34688644

ABSTRACT

This study investigated a novel sodium iron chlorophyllin-H2O2 (SIC-H2O2) sludge pretreatment strategy before anaerobic digestion to enhance methane production. The efficiencies and mechanism of the proposed strategy to enhance sludge biodegradability were explored. The SIC-H2O2 pretreatment could enhance the oxidation performance for sludge floc disintegration to dissociate TB-EPS into S-EPS increased SCOD to 521.38 mg/L. The increase of solubilization and release of EPS with the pretreatment facilitate the biogas production at 702 L kg-1 VS, which was 3-folds of the control and significantly higher than other pretreatments. The result of excitation-emission matrix and parallel factor (EEM-PARAFAC) analysis showed that the SIC-H2O2 pretreatment enhanced the dissociation of TB-EPS fractions, especially the protein-like and soluble microbial by-product-like substances. Electron paramagnetic resonance (EPR) results provided evidence for homolytic catalysis H2O2 for the generation OH and the production of high-valent (Por)FeIV(O) intermediates. Synergistic effects of reactive oxygen species (OH, H2O2 and /HO2) and (Por)FeIV(O) enhanced the EPS disintegration during SIC-H2O2 pretreatment. The mixed-acid type fermentation provided continuous VFAs supply under the enrichment of Chloroflexi and Actinobacteria and multiplication Methanosaeta also promoted methane production. This research provides a feasible pretreatment strategy increase sludge biodegradability and enhance biogas production in the anaerobic digestion process.


Subject(s)
Biofuels , Sewage , Anaerobiosis , Biofuels/analysis , Bioreactors , Chlorophyllides , Hydrogen Peroxide , Methane , Sewage/microbiology , Waste Disposal, Fluid/methods
14.
Sci Total Environ ; 806(Pt 4): 150941, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34653465

ABSTRACT

Biological wastewater treatment generates a large quantity of sewage sludge that requires proper treatments. In this study, the biochar pyrolyzed by sludge conditioned with Fenton's reagent and lime (referred to as Fenton-lime system) was first used as an efficient silicon fertilizer for rice cultivation. When the pyrolysis temperature was 750 °C, the dissolved silicon and available silicon contents in biochar derived from sludge conditioned with Fenton-lime system were much higher than those in raw sludge derived biochar without conditioning (3.49 vs. 0.72, 77.25 vs. 2.33 mg/g dry solid, respectively). The enhanced available silicon content was attributed to the newly formed calcium aluminosilicate from the reactions between the added lime and silicon-rich phases in sludge. The rice cultivated with biochar derived from Fenton-lime conditioned sludge showed improved biomass of stem and root by 76.85% and 36.11%, respectively, compared to blank group without the addition of Si source. Heavy metals and the reactive oxygen species (ROS) accumulation in rice were not observed after a culture period of 30 days in the application of sludge-derived biochar as silicon fertilizer. This study provides a promising approach for sewage sludge recycling as an efficient silicon fertilizer in silicon-deficiency land.


Subject(s)
Sewage , Silicon , Biological Availability , Calcium Compounds , Charcoal , Hydrogen Peroxide , Iron , Oxides
15.
Chemosphere ; 287(Pt 3): 132045, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34563772

ABSTRACT

The evaluation of ecological risks of contaminant mixtures to organisms is very challenging due to the non-linear response of organisms to each component, especially under the co-existence of both stimulators and inhibitors. Whether the stimulatory effect can reduce or even offset the inhibitory effect would be critical to the risk assessment and the treatment measures of mixed pollutants. Here, the combined toxicity of sodium fluoride (NaF), a stimulator with stimulation rate >100%, and six compounds that cannot induce hormesis (four ionic liquids (ILs) and two pesticides) were studied. The time-dependent toxicity of each toxicant on Vibrio qinghaiensis sp.-Q67 was investigated at 0.25, 2, 4, 6, 8, 10 and 12 h. Results showed that four ILs and two pesticides failed to induce hormesis, while NaF induced hormesis from 2 to 6 h and induced stimulation only after 6 h and reached its maximum (650%) at 12 h. All mixture rays with NaF induced hormesis at different times. In the four NaF-IL mixture systems, the absolute value of maximum stimulation demonstrated an upwards and then a downwards trend with the increasing of mixture ratio of IL. In two NaF-pesticide systems, the maximum stimulation effect declined with the increasing of the mixture ratio of pesticide. The toxicities of the mixture were successfully predicted by the improved inverse distance weighted interpolation, which are not able to be predicted by the commonly used concentration addition or independent action models. This paper shed lights on evaluating the hormesis of mixtures and the ecological risk of fluoride.


Subject(s)
Ionic Liquids , Vibrio , Hormesis , Risk Assessment
16.
Environ Res ; 203: 111825, 2022 01.
Article in English | MEDLINE | ID: mdl-34364865

ABSTRACT

Deep dewatering of sewage sludge pretreated with advanced oxidation processes (AOPs) is a strategy for efficient sludge reduction and subsequent disposal. The pretreatment and dewatering performance of sludge conditioned with three types of AOPs (Fe2+/H2O2, Fe2+/Ca(ClO)2, and Fe2+/Na2S2O8), compared with sludge conditioned with traditional conditioner (Fe3+/CaO), were investigated in both bench and pilot-scale tests. All of those conditioner systems could reduce the water content of dewatered sludge cake to below 60 wt% in bench-scale (about 16 kg raw sludge per round) and pilot-scale (approximate 800 kg raw sludge per round) diaphragm filter press dewatering. Compared with raw sludge, the deep-dewatering filtrate after different conditioning and dewatering processes had higher ammonia nitrogen (NH4+-N) and chemical oxygen demand (COD) contents due to the degradation of organic matter, and much lower total phosphorus (TP) content due to the formation of iron phosphate precipitate. A better biodegradability (i.e. higher BOD5/COD ratio) was found in the deep-dewatering filtrate of sludge conditioned with Fe2+/H2O2 (25.2 %) and Fe2+/Ca(ClO)2 (17.4 %). Most of the heavy metals (Cr, Cu, Ni, and Pb) (>79 wt%) have remained in the dewatered sludge cake, and most of the Cl element (>90 wt%) in the sludge pretreated by Fe2+/Ca(ClO)2 and Fe3+/CaO was kept in the filtrate, rather than the dewatered sludge cake. Based on the pilot-scale experimental results, if all the filtrate in the deep-dewatering process returned to the influent of WWTP, the loading ratios of TP, NH4+-N, COD in the four conditioner systems were less than 3 wt%. The above results proved that the AOPs conditioned sludge could achieve deep-dewatering in pilot-scale and the direct recirculation of deep-dewatering filtrate to the influent of wastewater treatment plant was feasible.


Subject(s)
Sewage , Water Purification , Hydrogen Peroxide , Waste Disposal, Fluid , Water
17.
J Hazard Mater ; 422: 126834, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34390954

ABSTRACT

Microplastic accumulation in agricultural soils can stress plants and affects quality of the products. Current research on the effects of microplastics on plants is not consistent and the underlying mechanisms are yet unknown. Here, the molecular mechanisms of the stress response were investigated via metabolomic and transcriptomic analyses of rice Oryza sativa L. II Y900 and XS123 under the exposure of polystyrene microplastics (PS-MPs) in a field study. Distinct responses were obtained in these two rice subspecies, showing decreased head rice yield by 10.62% in Y900 and increase by 6.35% in XS123. The metabolomics results showed that PS-MPs exposure inhibited 29.63% of the substance accumulation-related metabolic pathways and 43.25% of the energy expenditure-related metabolic pathways in the Y900 grains; however, these related pathways were promoted in the XS123 grains. The transcriptomics results indicated that the expression of genes encoding proteins involved in the tricarboxylic acid cycle in the Y900 grains was inhibited, but it was enhanced in the XS123 grains. The XS123 subspecies could response against microplastic exposure stress through the metabolite accumulation and energy expenditure pathways, while the Y900 could not. The results provide insight into the perturbation of rice grains in farmlands with microplastics contamination.


Subject(s)
Oryza , Energy Metabolism , Microplastics , Oryza/genetics , Plastics/toxicity , Soil
18.
Bioresour Technol ; 340: 125717, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34426232

ABSTRACT

A microbial fuel cell-photocatalysis system with a novel photocatalytic air-cathode (MFC-PhotoCat) was proposed for synergistic degradation of 2,4,6-trichlorophenol (TCP) with simultaneous electricity generation. Stable electricity generation of 350 mV was achieved during 130 days of operation. Besides, 50 mg L-1 TCP was completely degraded within 72 h, and the rate constant of 0.050 h-1 was 1.8-fold higher than MFC with air-cathode without N-TiO2 photocatalyst. Degradation pathway was proposed based on the intermediates detected and density functional theory (DFT) calculation, with two open-chain intermediates (2-chloro-4-keto-2-hexenedioic acid and hexanoic acid) detected. Furthermore, hierarchical cluster and PCoA revealed significant shifts of microbial community structures, with enriched exoelectrogen (55.2% of Geobacter) and TCP-degrading microbe (7.1% of Thauera) on the cathode biofilm as well as 61.8% of Pseudomonas in the culture solution. This study provides a promising strategy for synergic degradation of recalcitrant contaminants by intimate-coupling of MFC and photocatalysis.


Subject(s)
Bioelectric Energy Sources , Environmental Pollutants , Geobacter , Electricity , Electrodes
19.
Chemosphere ; 284: 131297, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34182288

ABSTRACT

An investigation was conducted for waste activated sludge pretreated by different methods (e.g., ultrasonic, thermal, ozone, and acid/alkaline) in order to establish correlations between amino acids and parameters related to sludge dewaterability (e.g., capillary suction time (CST), specific resistance to filtration (SRF), proteins (PN) and polysaccharides (PS) in different fractions of extracellular polymeric substances (EPS), zeta potential, and particle sizes). The results indicated that glycine, serine, and threonine were the key identified amino acids correlated with parameters related to sludge dewaterability. To be exemplified, glycine showed positive correlations with the normalized CST (regression coefficient (R) = 0.72, p < 0.05), the normalized SRF (R = 0.74, p < 0.05), PN in soluble EPS (R = 0.89, p < 0.05), PS in soluble EPS (R = 0.56, p < 0.05), tryptophan-like PN in soluble EPS (R = 0.60, p < 0.05), and tryptophan-like PN in loosely-bound EPS (R = 0.58, p < 0.05). After adding extra glycine, serine, and threonine into sludge samples, sludge dewaterability was deteriorated. The hydrophilic functional groups of CO and C-OH were found to be more predominant in sludge with the presence of these amino acids. The Lewis acid-base interaction predominated in determining the net attraction among sludge flocs. Moreover, the presence of glycine, serine, and threonine resulted in high repulsive hydrophilic interaction, which deteriorated sludge dewaterability. This study emphasized the importance of amino acids in sludge dewatering and amino acids might be incorporated into parameters reflecting sludge dewaterability.


Subject(s)
Extracellular Polymeric Substance Matrix , Sewage , Amino Acids , Filtration , Waste Disposal, Fluid , Water
20.
Water Res ; 193: 116888, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33581403

ABSTRACT

Oxidation ditches (ODs) are often used for wastewater treatment. However, limitations of ODs like high energy expenditure and increased sludge sedimentation hinder its wide application. In this study, the computational fluid dynamics (CFD) model integrated with Activated Sludge Model No. 2 (ASM2) was proposed and applied in a full-scale OD. The integrated model provided heterogeneous information on the characteristics of hydrodynamics and biokinetics of OD, especially with respect to the simulation of total phosphorus removal by CFD-ASM2 integration model for the first time. The simulated values of flow velocities, suspended solids (SS), dissolved oxygen, chemical oxygen demand, total nitrogen, ammonium nitrogen, and total phosphorus concentrations were well validated with the measured results, with the standard deviation errors of less than 5.56%, 0.28%, 0.74%, 7.39%, 3.17%, 5.27%, and 7.40%, respectively. Based on the integrated model, four different operational strategies were simulated. The proposed operational strategy of operating 7 surface aerators and 10 submerged impellers not only met the standard discharge requirements (GB 18918-2002) but also consumed less energy by 22.3%, compared with the original strategy of operating 9 surface aerators and 13 submerged impellers. Meanwhile, this proposed operational strategy also reduced the SS concentrations in the second and fourth channels, which was beneficial to elimination of sludge sedimentation. Moreover, the proposed operational strategy was successfully applied and validated in full-scale OD. The foregoing results collectively suggest that the CFD-AMS2 integration model is numerically capable to optimize the operational strategy of ODs.


Subject(s)
Hydrodynamics , Water Purification , Bioreactors , Oxidation-Reduction , Sewage , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...