Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Life Sci ; 342: 122512, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38395384

ABSTRACT

Ubiquitin-specific protease 24 (USP24) is an essential member of the deubiquitinating protease family found in eukaryotes. It engages in interactions with multiple proteins, including p53, MCL-1, E2F4, and FTH1, among others. Through these interactions, USP24 plays a critical role in regulating vital cellular processes such as cell cycle control, DNA damage response, cellular iron autophagy, and apoptosis. Increased levels of USP24 have been observed in various cancer types, including bladder cancer, lung cancer, myeloma, hepatocellular carcinoma, and gastric cancer. However, in certain tumors like kidney cancer, USP24 is significantly downregulated, and the specific mechanism behind this remains unclear. Currently, there are no officially approved USP24 inhibitors available for clinical use. Some existing inhibitors targeting USP24 have shown promising effects in treating malignancies; however, their precise mode of action and information regarding binding sites are not well understood. Moreover, further optimization is required to enhance the selectivity and efficacy of these inhibitors. This review aims to provide a comprehensive overview of recent advancements in understanding the cellular functions of USP24, its association with various diseases, and the development of small-molecule inhibitors that target this protein. In conclusion, USP24 represents a promising therapeutic target for various diseases, and ongoing research will contribute to validating its role and facilitating the development of effective treatments.


Subject(s)
Apoptosis , Endopeptidases , Ubiquitin-Specific Proteases
2.
Thorac Cancer ; 14(16): 1477-1491, 2023 06.
Article in English | MEDLINE | ID: mdl-37144254

ABSTRACT

BACKGROUND: Emerging evidence has revealed that tumor-associated macrophages (TAMs) and exosomes play a crucial role in the microenvironment for tumor growth. However, the mechanisms through which exosomal miRNAs modulate TAMs and tumor development in breast cancer are not fully understood. METHODS: We constructed a macrophage model and an indirect coculture system consist of breast cancer cells and macrophages. Exosomes were isolated from BC cells culture supernatant and identified by transmission electron microscopy, Western blot and Nanosight LM10 system. The expression of miR-148b-3p in exosomes was determined by qRT-PCR and the effect of exosomal miR-148b-3p on macrophage polarization was measured using qRT-PCR and ELISA. The proliferation, migration and invasion of BC cells were estimated by EdU, wound healing assay and transwell assay. We employed bioinformatics, luciferase reporter assay and Western blot to identify the target gene of miR-148b-3p. Western blot was used to clarify the mechanism of exosomal miR-148b-3p mediated the crosstalk between BC cells and M2 macrophages. RESULTS: Cancer-derived exosomes could induce M2 polarization of macrophages, which promoted the migration and invasion of breast cancer cells. We found that exosomal miR-148b-3p was overexpressed in breast cancer cell-derived exosomes and correlated with lymph node metastasis, late tumor stage and worse prognosis. Upregulated miR-148b-3p expression in exosomes modulated macrophage polarization by targeting TSC2, which promoted the proliferation and might affect migration and invasion of breast cancer cells. Interestingly, we found that exosomal miR-148b-3p could induce M2 macrophage polarization via the TSC2/mTORC1 signaling pathway in breast cancer. CONCLUSION: Overall, our study elucidated that miR-148b-3p could be transported by exosomes from breast cancer cells to surrounding macrophages and induced M2 polarization by targeting TSC2, providing novel insights for breast cancer therapy.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , Breast Neoplasms/pathology , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , Macrophages/metabolism , Cell Proliferation , Tumor Microenvironment
3.
Cell Death Dis ; 12(12): 1120, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34853307

ABSTRACT

Studies have shown that cancer-associated fibroblasts (CAFs) play an irreplaceable role in the occurrence and development of tumors. Therefore, exploring the action and mechanism of CAFs on tumor cells is particularly important. In this study, we compared the effects of CAFs-derived exosomes and normal fibroblasts (NFs)-derived exosomes on breast cancer cells migration and invasion. The results showed that exosomes from both CAFs and NFs could enter into breast cancer cells and CAFs-derived exosomes had a more enhancing effect on breast cancer cells migration and invasion than NFs-derived exosomes. Furthermore, microRNA (miR)-18b was upregulated in CAFs-derived exosomes, and CAFs-derived exosomes miR-18b can promote breast cancer cell migration and metastasis by specifically binding to the 3'UTR of Transcription Elongation Factor A Like 7 (TCEAL7). The miR-18b-TCEAL7 pathway promotes nuclear Snail ectopic activation by activating nuclear factor-kappa B (NF-κB), thereby inducing epithelial-mesenchymal transition (EMT) and promoting cell invasion and metastasis. Moreover, CAFs-derived exosomes miR-18b could promote mouse xenograft model tumor metastasis. Overall, our findings suggest that CAFs-derived exosomes miR-18b promote nuclear Snail ectopic by targeting TCEAL7 to activate the NF-κB pathway, thereby inducing EMT, invasion, and metastasis of breast cancer. Targeting CAFs-derived exosome miR-18b may be a potential treatment option to overcome breast cancer progression.


Subject(s)
Breast Neoplasms/genetics , Cancer-Associated Fibroblasts/metabolism , Nuclear Proteins/metabolism , Animals , Breast Neoplasms/pathology , Female , Humans , Mice , MicroRNAs , Neoplasm Invasiveness , Neoplasm Metastasis
4.
Zhongguo Fei Ai Za Zhi ; 24(7): 461-467, 2021 Jul 20.
Article in Chinese | MEDLINE | ID: mdl-34120429

ABSTRACT

BACKGROUND: ANXA2 plays a very important role in cancer progression. chemokine ligand 18 (CCL18) is associated with the invasion, migration, metastasis and poor prognosis of lung adenocarcinoma (LUAD). In this study, we aimed to explore whether CCL18 promotes LUAD invasion through ANXA2, and its role and molecular mechanism in LUAD invasion. METHODS: Western blot was used to detect ANXA2 expression in LUAD tissues and adjacent non-tumor tissues, the transfection efficiency of SiANXA2#2 in cells and the role of ANXA2 as an upstream regulator in the AKT/cofilin signaling pathway. In vitro cytological experiments such as chemotaxis experiment and transwell invasion test was used to explore the mechanism of ANXA2 on LUAD metastasis. F-actin polymerization experiment and Western blot were used to detect whether invasion ability alteration of SiANXA2#2 A549 cells are related to F-actin. RESULTS: Western blot analysis showed that compared with adjacent non-tumor tissues, the protein expression level of ANXA2 in cancer tissues increased (P<0.05). In the chemotaxis experiment and invasion experiment, the chemotaxis and invasion ability induced by CCL18 decreased when ANXA2 knockdowned (P<0.05). Compared with the control group, F-actin polymerization was significantly lower in ANXA2 knockdown group, while phosphorylation of AKT at Ser473 and Thr308 and phosphorylation of Cofilin and LIMK were reduced in ANXA2 knockdown group (P<0.05). CONCLUSIONS: ANXA2 knockdown can reduce the invasive effect of CCL18 on LUAD cells by reducing phosphorylation of AKT and downstream pathways.


Subject(s)
Adenocarcinoma of Lung , Annexin A2 , Chemokines, CC , Lung Neoplasms , A549 Cells , Actin Depolymerizing Factors/genetics , Actin Depolymerizing Factors/metabolism , Actins/genetics , Actins/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Annexin A2/genetics , Annexin A2/metabolism , Cell Movement/genetics , Cell Movement/physiology , Cell Proliferation/genetics , Cell Proliferation/physiology , Chemokines, CC/genetics , Chemokines, CC/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/physiopathology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...