Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Regen Res ; 18(3): 609-617, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36018185

ABSTRACT

Postoperative cognitive dysfunction (POCD) is a common surgical complication. Diabetes mellitus (DM) increases risk of developing POCD after surgery. DM patients with POCD seriously threaten the quality of patients' life, however, the intrinsic mechanism is unclear, and the effective treatment is deficiency. Previous studies have demonstrated neuronal loss and reduced neurogenesis in the hippocampus in mouse models of POCD. In this study, we constructed a mouse model of DM by intraperitoneal injection of streptozotocin, and then induced postoperative cognitive dysfunction by transient bilateral common carotid artery occlusion. We found that mouse models of DM-POCD exhibited the most serious cognitive impairment, as well as the most hippocampal neural stem cells (H-NSCs) loss and neurogenesis decline. Subsequently, we hypothesized that small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells (iMSC-sEVs) might promote neurogenesis and restore cognitive function in patients with DM-POCD. iMSC-sEVs were administered via the tail vein beginning on day 2 after surgery, and then once every 3 days for 1 month thereafter. Our results showed that iMSC-sEVs treatment significantly recovered compromised proliferation and neuronal-differentiation capacity in H-NSCs, and reversed cognitive impairment in mouse models of DM-POCD. Furthermore, miRNA sequencing and qPCR showed miR-21-5p and miR-486-5p were the highest expression in iMSC-sEVs. We found iMSC-sEVs mainly transferred miR-21-5p and miR-486-5p to promote H-NSCs proliferation and neurogenesis. As miR-21-5p was demonstrated to directly targete Epha4 and CDKN2C, while miR-486-5p can inhibit FoxO1 in NSCs. We then demonstrated iMSC-sEVs can transfer miR-21-5p and miR-486-5p to inhibit EphA4, CDKN2C, and FoxO1 expression in H-NSCs. Collectively, these results indicate significant H-NSC loss and neurogenesis reduction lead to DM-POCD, the application of iMSC-sEVs may represent a novel cell-free therapeutic tool for diabetic patients with postoperative cognitive dysfunction.

2.
Lab Invest ; 102(5): 505-514, 2022 05.
Article in English | MEDLINE | ID: mdl-35066566

ABSTRACT

LncRNAs and miRNAs are correlated with the pathogenesis of myocardial ischemia-reperfusion injury (MIRI). Whether lncRNA ROR or miR-185-5p plays a crucial role in MIRI is still unclear. In in-vitro, human cardiac myocytes (HCMs) were treated with hypoxia/reoxygenation (H/R). Wistar rats were used to set up an in-vitro I/R model by means of recanalization after ligation. Evaluation of the myocardial injury marker lactate dehydrogenase (LDH) in HCMs cells was performed. The expression of miR-185-5p and ROR, IL-1ß, and IL-18 were detected by qRT-PCR. ELISA was also performed to evaluate the secretion of IL-1ß and IL-18. Western blotting was carried out to determine CDK6, NLRP3, GSDMD-N, ASC, and cleaved-caspase1 protein expression. The relationship between miR-185-5p and CDK6 or ROR was confirmed by a dual-luciferase reporter assay. Our findings revealed that H/R treated HCMs showed a significantly decreased miR-185-5p expression and increased expression of CDK6 and ROR. ROR knockdown reduced H/R induced pyroptosis and inflammation, while knockdown of miR-185-5p accelerated the effect. Furthermore, miR-185-5p was negatively regulated and absorbed by ROR in HCMs. Overexpression of miR-185-5p reversed the H/R-induced cell pyroptosis and upregulation of LDH, IL-1ß, and IL-18. In HCMs, miR-185-5p was also negatively regulated and related to CDK6 expression. Moreover, overexpression of CDK6 significantly inhibited the effects of miR-185-5p mimics on the inflammatory response and pyroptosis of HCMs. Knockdown of ROR alleviated H/R-induced myocardial injury by elevating miR-185-5p and inhibiting CDK6 expression. Taken together, our results show that the ROR/miR-185-5p/CDK6 axis modulates cell pyroptosis induced by H/R and the inflammatory response of HCMs.


Subject(s)
MicroRNAs , Myocardial Reperfusion Injury , RNA, Long Noncoding , Animals , Hypoxia , Interleukin-18 , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Reperfusion Injury/genetics , RNA, Long Noncoding/genetics , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...