Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Neoplasia ; 44: 100935, 2023 10.
Article in English | MEDLINE | ID: mdl-37717471

ABSTRACT

Voltage-dependent anion-selective channel protein 1 (VDAC1) is the most abundant protein in the mitochondrial outer membrane and plays a crucial role in the control of hepatocellular carcinoma (HCC) progress. Our previous research found that cytosolic molecular chaperone heat shock protein 90 (Hsp90) interacted with VDAC1, but the effect of the C-terminal and N-terminal domains of Hsp90 on the formation of VDAC1 oligomers is unclear. In this study, we focused on the effect of the C-terminal domain of Hsp90 on VDAC1 oligomerization, ubiquitination, and VDAC1 channel activity. We found that Hsp90 C-terminal domain inhibitor Novobiocin promoted VDAC1 oligomerization, release of cytochrome c, and activated mitochondrial apoptosis pathway. Atomic coarse particle modeling simulation revealed C-terminal domain of Hsp90α stabilized VDAC1 monomers. The purified VDAC1 was reconstituted into a planar lipid bilayer, and electrophysiology experiments of patch clamp showed that the Hsp90 C-terminal inhibitor Novobiocin increased VDAC1 channel conductance via promoting VDAC1 oligomerization. The mitochondrial ubiquitination proteomics results showed that VDAC1 K274 mono-ubiquitination was significantly decreased upon Novobiocin treatment. Site-directed mutation of VDAC1 (K274R) weakened Hsp90α-VDAC1 interaction and increased VDAC1 oligomerization. Taken together, our results reveal that Hsp90 C-terminal domain inhibition promotes VDAC1 oligomerization and VDAC1 channel conductance by decreasing VDAC1 K274 mono- ubiquitination, which provides a new perspective for mitochondria-targeted therapy of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Apoptosis , Novobiocin/pharmacology , Liver Neoplasms/genetics , Ubiquitination , Voltage-Dependent Anion Channel 1/genetics , Voltage-Dependent Anion Channel 1/metabolism
2.
ACS Omega ; 7(12): 10225-10234, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35382303

ABSTRACT

Design and fabrication of functional materials for anti-icing and deicing attract great attention from both the academic research and industry. Among them, the study of fish-scale-like materials has proved that enabling sequential rupture is an effective approach for weakening the intrinsic interface adhesion. Here, graphene platelets were utilized to construct fish-scale-like surfaces for easy ice detachment. Using a biomimicking arrangement of the graphene platelets, the surfaces were able to alter their structural morphology for the sequential rupture in response to external forces. With different packing densities of graphene platelets, all the surfaces showed universally at least 50% reduction in atomistic tensile ice adhesion strength. Because of the effect of sequential rupture, stronger ice-surface interactions did not lead to an obvious increase in ice adhesion. Interestingly, the high packing density of graphene platelets resulted in stable and reversible surface morphology in cyclic tensile and shearing tests, and subsequently high reproducibility of the sequential rupture mode. The fish-scale-like surfaces built and tested, together with the nanoscale deicing results, provided a close view of ice adhesion mechanics, which can promote future bioinspired, stress-responsive, anti-icing surface designs.

3.
Langmuir ; 38(10): 3129-3138, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35238580

ABSTRACT

Microemulsions have been attracting great attention for their importance in various fields, including nanomaterial fabrication, food industry, drug delivery, and enhanced oil recovery. Atomistic insights into the self-microemulsifying process and the underlying mechanisms are crucial for the design and tuning of the size of microemulsion droplets toward applications. In this work, coarse-grained models were used to investigate the role that droplet sizes played in the preliminary self-microemulsifying process. Time evolution of liquid mixtures consisting of several hundreds of water/surfactant/oil droplets was resolved in large-scale simulations. By monitoring the size variation of the microemulsion droplets in the self-microemulsifying process, the dynamics of diameter distribution of water/surfactant/oil droplets were studied. The underlying mass transport mechanisms responsible for droplet size evolution and stability were elucidated. Specifically, temperature effects on the droplet size were clarified. This work provides the knowledge of the self-microemulsification of water-in-oil microemulsions at the nanoscale. The results are expected to serve as guidelines for practical strategies for preparing a microemulsion system with desirable droplet sizes and properties.


Subject(s)
Surface-Active Agents , Water , Emulsions
4.
Mater Horiz ; 8(12): 3266-3280, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34842262

ABSTRACT

Gel materials have drawn great attention recently in the anti-icing research community due to their remarkable potential for reducing ice adhesion, inhibiting ice nucleation, and restricting ice propagation. Although the current anti-icing gels are in their infancy and far from practical applications due to poor durability, their outstanding prospect of icephobicity has already shed light on a new group of emerging anti-icing materials. There is a need for a timely review to consolidate the new trends and foster the development towards dedicated applications. Starting from the stage of icing, we first survey the relevant anti-icing strategies. The latest anti-icing gels are then categorized by their liquid phases into organogels, hydrogels, and ionogels. At the same time, the current research focuses, anti-icing mechanisms and shortcomings affiliated with each category are carefully analysed. Based upon the reported state-of-the-art anti-icing research and our own experience in polymer-based anti-icing materials, suggestions for the future development of the anti-icing gels are presented, including pathways to enhance durability, the need to build up the missing fundamentals, and the possibility to enable stimuli-responsive properties. The primary aim of this review is to motivate researchers in both the anti-icing and gel research communities to perform a synchronized effort to rapidly advance the understanding and making of gel-based next generation anti-icing materials.


Subject(s)
Food , Gels
5.
Langmuir ; 37(47): 13873-13881, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34784476

ABSTRACT

Natural gas hydrate is a promising future energy source, but it also poses a huge threat to oil and gas production due to its ability to deposit within and block pipelines. Understanding the atomistic mechanisms of adhesion between the hydrate and solid surfaces and elucidating its underlying key determining factors can shed light on the fundamentals of novel antihydrate materials design. In this study, large-scale molecular simulations are employed to investigate the hydrate adhesion on solid surfaces, especially with focuses on the atomistic structures of intermediate layer and their influences on the adhesion. The results show that the structure of the intermediate layer formed between hydrate and solid surface is a competitive equilibrium of induced growth from both sides, and is regulated by the content of guest molecules. By comparing the fracture behaviors of the hydrate-solid surface system with different intermediate structures, it is found that both the lattice areal density of water structure and the adsorption of guest molecules on the interface together determine the adhesion strength. Based on the analysis of the adhesion strength distribution, we have also revealed the origins of the drastic difference in adhesion among different water structures such as ice and hydrate. Our simulation indicates that ice-adhesion strength is approximately five times that of lowest hydrate adhesion strength. This finding is surprisingly consistent with the available experimental results.

6.
Adv Sci (Weinh) ; 8(21): e2101163, 2021 11.
Article in English | MEDLINE | ID: mdl-34499428

ABSTRACT

Remarkable progress has been made in surface icephobicity in the recent years. The mainstream standpoint of the reported antiicing surfaces yet only considers the ice-substrate interface and its adjacent regions being of static nature. In reality, the local structures and the overall properties of ice-substrate interfaces evolve with time, temperature and various external stimuli. Understanding the dynamic properties of the icing interface is crucial for shedding new light on the design of new anti-icing surfaces to meet challenges of harsh conditions including extremely low temperature and/or long working time. This article surveys the state-of-the-art anti-icing surfaces and dissects their dynamic changes of the chemical/physical states at icing interface. According to the focused critical ice-substrate contacting locations, namely the most important ice-substrate interface and the adjacent regions in the substrate and in the ice, the available anti-icing surfaces are for the first time re-assessed by taking the dynamic evolution into account. Subsequently, the recent works in the preparation of dynamic anti-icing surfaces (DAIS) that consider time-evolving properties, with their potentials in practical applications, and the challenges confronted are summarized and discussed, aiming for providing a thorough review of the promising concept of DAIS for guiding the future icephobic materials designs.

7.
Adv Mater ; 33(23): e2008523, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33938044

ABSTRACT

Current synthetic elastomers suffer from the well-known trade-off between toughness and stiffness. By a combination of multiscale experiments and atomistic simulations, a transparent unfilled elastomer with simultaneously enhanced toughness and stiffness is demonstrated. The designed elastomer comprises homogeneous networks with ultrastrong, reversible, and sacrificial octuple hydrogen bonding (HB), which evenly distribute the stress to each polymer chain during loading, thus enhancing stretchability and delaying fracture. Strong HBs and corresponding nanodomains enhance the stiffness by restricting the network mobility, and at the same time improve the toughness by dissipating energy during the transformation between different configurations. In addition, the stiffness mismatch between the hard HB domain and the soft poly(dimethylsiloxane)-rich phase promotes crack deflection and branching, which can further dissipate energy and alleviate local stress. These cooperative mechanisms endow the elastomer with both high fracture toughness (17016 J m-2 ) and high Young's modulus (14.7 MPa), circumventing the trade-off between toughness and stiffness. This work is expected to impact many fields of engineering requiring elastomers with unprecedented mechanical performance.

8.
Phys Chem Chem Phys ; 22(43): 24907-24916, 2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33124645

ABSTRACT

Microemulsions exist widely in nature, daily life and industrial manufacturing processes, including petroleum production, food processing, drug delivery, new material fabrication, sewage treatment, etc. The mechanical properties of microemulsion droplets and a correlation to their molecular structures are of vital importance to those applications. Despite studies on their physicochemical determinants, there are lots of challenges of exploring the mechanical properties of microemulsions by experimental studies. Herein, atomistic modelling was utilized to study the stability, deformation, and rupture of Janus oligomer enabled water-in-oil microemulsion droplets, aiming at revealing their intrinsic relationship with Janus oligomer based surfactants and oil structures. The self-emulsifying process from a water, oil and surfactant mixture to a single microemulsion droplet was modulated by the amphiphilicity and structure of the surfactants. Four microemulsion systems with an interfacial thickness in the range of 7.4-17.3 Å were self-assembled to explore the effect of the surfactant on the droplet morphology. By applying counter forces on the water core and the surfactant shell, the mechanical stability of the microemulsion droplets was probed at different ambient temperatures. A strengthening response and a softening regime before and after a temperature-dependent peak force were identified followed by the final rupture. This work demonstrates a practical strategy to precisely tune the mechanical properties of a single microemulsion droplet, which can be applied in the formation, de-emulsification, and design of microemulsions in oil recovery and production, drug delivery and many other applications.

9.
J Hazard Mater ; 390: 122176, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32006849

ABSTRACT

The fundamental mechanism behind oil/water separation materials is their surface wettability that allows either oil or water to pass through. The conventional materials for oil/water separation generally have extreme wettability, namely superhydrophilic for water separation and superhydrophobic for oil separation. Using easily accessible materials that are medium hydrophobic or even relatively hydrophilic for preparing highly efficient oil/water separators have rarely been reported. In this work, a new strategy by triggering phase transition of infused lubricant from liquid to solid state in porous structure is realized in fabricating slippery lubricant infused porous structure for oil/water separations. By infusing polyester fabric with coconut oil, after phase transition, excellent water repellency and oil permeability by an absorbing-permeating mechanism are achieved, despite the low water contact angle on the new material. Although the new phase transformable slippery lubricant infused porous structure, features much milder hydrophobicity than conventional oil/water separators, it can remove diverse types of oil from water with high efficiencies. The phase transformable slippery lubricant infused porous structure is able to maintain their water repellency after immersing in high concentration salt (10 wt% NaCl), acid (25 % HCl), alkaline (25 % NH3·H2O) solutions for 120 h, showing remarkably functional durability in harsh environment. The lubricant phase transition mechanism proposed in this study is universally applicable to porous substrates with various chemical compositions and pore structures, such as porous sponges or even daily life breads, for creating efficient oil/water separators, which can serve as a novel accessible design principle of phase transformable slippery lubricant infused porous structure for eco-friendly oil/water separators.

10.
Nanoscale ; 11(35): 16262-16269, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31454002

ABSTRACT

State-of-the-art passive icephobicity relies mainly on static parameters such as surface energy, coating elastic modulus, crack sizes and so on. Low ice adhesion resulting from the dynamic de-icing process, for instance ice detaching modes from substrates, has not yet been explored. In the current study, atomistic modeling and molecular dynamics simulations were employed to identify ice rupture modes as crucial dynamic factors for surface icephobicity. A fish-scale-like icephobic surface prototype enabling low-adhesion sequential rupture of the atomistic interactions at the ice-solid interface was proposed. The novel surface has an intrinsic extended interface rupture pathway, which can lead to a ∼60% reduction in atomistic ice adhesion compared with concurrent ice rupture. This study sheds light on interface mechanical design for surface icephobicity, and could provide solutions for anti-icing, nanoscale tribology and many others. The concept of implementing interfacial rupture modes proposed in this study can also apply to interface design for tailored adhesion mechanics.

11.
Soft Matter ; 15(17): 3607-3611, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30973176

ABSTRACT

Slide-ring crosslinked polydimethylsiloxane (PDMS) is designed and prepared for anti-icing/deicing applications. Compared with the covalent crosslinks, the slidable crosslinks enhance the mobility of polymer networks and endow the materials with low elastic modulus. The PDMS matrix guarantees the hydrophobicity of as-prepared coatings. These properties synergistically lead to ultra-low ice adhesion strength (13.0 ± 1.3 kPa) and excellent mechanical durability. The ice adhesion strength on the coating maintains a value of ∼12 kPa during 20 icing/deicing cycles, and increases gradually to a value of ∼22 kPa after 800 cycles of abrasions. The novel design strategy provides one-step forward to anti-icing/deicing solutions for targeted applications.

12.
Phys Chem Chem Phys ; 20(38): 24759-24767, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30229243

ABSTRACT

Water adhesion underlies wettabilities, and thus hydrophobicities, and defines surface properties like self-cleaning, icephobicity and many others. The nanomechanics of water adhesion, especially in the dynamic dewetting processes, has not been fully investigated. Here in this article, atomistic modeling and molecular dynamics simulations were utilized to probe the adhesion mechanics of water droplets on nanopillars and flat surfaces, covering dewetting in the Wenzel and the newly discovered monostable Cassie-Baxter states. The simulations were able to identify intermediate dewetting states on rough surfaces, and resolve the transition between wetting states under force. The results revealed characteristic features of dynamic water adhering stress underpinning dewetting on the nanoscale, which provided deeper knowledge on surface dewetting mechanics. This work complements nanoscale dewetting experiments for new fundamental insights in studies including nanoroughness design, enhanced oil recovery, anti-icing and others.

13.
Nanoscale ; 10(33): 15641-15653, 2018 Aug 23.
Article in English | MEDLINE | ID: mdl-30091442

ABSTRACT

Entwining-induced robust natural biosystems show superior mechanical performances over their counterparts. However, the role played by topological entwinement in the mechanical properties of artificial nanohelixes remains unknown. Here, the tensile characteristics of nano-entwined carbon nanocoil (ECNC) metamaterials are explored by atomistic simulations. The simulation results show that ECNCs exhibit heterogeneous pre-stress distribution along the spiral surfaces. The predicted stretching stress-strain responses correlate with the topological nano-entwining and dimensionality. Topological analysis reveals that the collective stretching of the bond and bond angle on the inner hexagon edge of the coils characterizes both early and final elastic extensions, whereas the intermediate elasticity is exclusively attributed to the inner-edged hexagon-angular deformation. The ECNCs impart pronounced tensile stiffnesses to the native structures, surprisingly with a maximum of over 13-fold higher stiffness for one triple-helix, beyond the scalability of mechanical springs in parallel, originating from the nano-entwining mechanism and increase in bulkiness. However, the reinforcement in strengths is restricted by the elastic strain limits that are degraded in ECNCs owing to the steric hindrance effect. All metastructures show superelongation-at-break due to a successive break-vs.-arrest process. Upon plastic deformation, the localized reduction in the radii of ECNCs leads to the formation of carbyne-based networks.

14.
ACS Appl Mater Interfaces ; 10(14): 11972-11978, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29547258

ABSTRACT

Ice accretion presents a severe risk for human safety. Although great efforts have been made for developing icephobic surfaces (the surface with an ice adhesion strength below 100 kPa), expanding the lifetime of state-of-the-art icephobic surfaces still remains a critical unsolved issue. Herein, a novel icephobic material is designed by integrating an interpenetrating polymer network (IPN) into an autonomous self-healing elastomer, which is applied in anti-icing for enhancing the mechanical durability. The molecular structure, surface morphology, mechanical properties, and durable icephobicity of the material were studied. The creep behaviors of the new icephobic material, which were absent in most relevant studies on self-healing materials, were also investigated in this work. Significantly, the material showed great potentials for anti-icing applications with an ultralow ice adhesion strength of 6.0 ± 0.9 kPa, outperforming many other icephobic surfaces. The material also exhibited an extraordinary durability, showing a very low long-term ice adhesion strength of ∼12.2 kPa after 50 icing/deicing cycles. Most importantly, the material was able to exhibit a self-healing property from mechanical damages in a sufficiently short time, which shed light on the longevity of icephobic surfaces in practical applications.

15.
ACS Omega ; 3(8): 10139-10144, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459142

ABSTRACT

Icephobic coating and surfaces are essential for protecting infrastructures such as transmission lines, transportation vehicles, and many others from severe damages of excessive icing. The slippery liquid-infused porous surfaces (SLIPS) are attracting escalating attention because of their low-ice adhesion strength. Despite all of the encouraging laboratory scale results, the SLIPS are still far from being applicable in real environments owing to the key unsolved problem, namely anti-icing durability. Inspired by the functionality of the amphibians' skin, lubricant regenerability was introduced to conventional SLIPS and realized by a facile and scalable fabrication route. A series of polydimethylsiloxane (PDMS)-based skinlike SLIPS were designed and fabricated by using a one-step method, the solvent evaporation-induced phase separation technique. The obtained skinlike SLIPS were able to regenerate surface lubricant constantly by internal residual stress because of phase separation and survive more than 15 cycles of wiping/regenerating tests. Thanks to the regenerability of the surface lubricant, the new SLIPS demonstrated durable icephobicity, showing a long-term low-ice adhesion strength below 70 kPa, which was only 43% of 160 kPa that for the pristine PDMS (Sylgard 184), even after 15 icing/deicing cycles. This work paves a new and facile way for achieving icephobic durability of SLIPS.

16.
Nanoscale ; 9(48): 19328-19336, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29199314

ABSTRACT

The highly anisotropic interactions in organic semiconductors together with the soft character of organic materials lead to strong coupling between nuclear vibrations and exciton dynamics, which potentially results in anomalous electrical, optical and optoelectrical properties. Here, we report on the Raman antenna effect from organic semiconducting nanobelts 6,13-dichloropentacene (DCP), resulting from the coupling of molecular excitons and intramolecular phonons. The highly ordered crystalline structure in DCP nanobelts enables the precise polarization-resolved spectroscopic measurement. The angle-dependent Raman spectroscopy under resonant excitation shows that all Raman modes from the skeletal vibrations of DCP molecule act like a nearly perfect dipole antenna IRaman ∝ cos4(θ - 90), with almost zero (maximum) Raman scattering parallel (perpendicular) to the nanobelt's long-axis. The Raman antenna effect in DCP nanobelt is originated from the coupling between molecular skeletal vibrations and intramolecular exciton and the confinement of intermolecular excitons. It dramatically enhances the Raman polarization ratio (ρ = I‖/I⊥ > 25) and amplifies the anisotropy of the angle-dependent Raman scattering (κRaman = Imax/Imin > 12) of DCP nanobelts. These findings have crucial implications for fundamental understanding on the exciton-phonon coupling and its effects on the optical properties of organic semiconductors.

17.
Soft Matter ; 13(37): 6562-6568, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28895968

ABSTRACT

Preventing icing on exposed surfaces is important for life and technology. While suppressing ice nucleation by surface structuring and local confinement is highly desirable and yet to be achieved, a realistic roadmap of icephobicity is to live with ice, but with lowest possible ice adhesion. According to fracture mechanics, the key to lower ice adhesion is to maximize crack driving forces at the ice-substrate interface. Herein, we present a novel integrated macro-crack initiator mechanism combining nano-crack and micro-crack initiators, and demonstrate a new approach to designing super-low ice adhesion surfaces by introducing sub-structures into smooth polydimethylsiloxane coatings. Our design promotes the initiation of macro-cracks and enables the reduction of ice adhesion by at least ∼50% regardless of the curing temperature, weight ratio and size of internal holes, reaching a lowest ice adhesion of 5.7 kPa. The multiscale crack initiator mechanisms provide an unprecedented and versatile strategy towards designing super-low ice adhesion surfaces.

18.
Bioinspir Biomim ; 11(5): 055008, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27623170

ABSTRACT

Polymer nanocomposites render a range of outstanding materials from natural products such as silk, sea shells and bones, to synthesized nanoclay or carbon nanotube reinforced polymer systems. In contrast to the fast expanding interest in this type of material, the fundamental mechanisms of their mixing, phase behavior and reinforcement, especially for higher nanoparticle content as relevant for bio-inorganic composites, are still not fully understood. Although polymer nanocomposites exhibit diverse morphologies, qualitatively their mechanical properties are believed to be governed by a few parameters, namely their internal polymer network topology, nanoparticle volume fraction, particle surface properties and so on. Relating material mechanics to such elementary parameters is the purpose of this work. By taking a coarse-grained molecular modeling approach, we study an range of different polymer nanocomposites. We vary polymer nanoparticle connectivity, surface geometry and volume fraction to systematically study rheological/mechanical properties. Our models cover different materials, and reproduce key characteristics of real nanocomposites, such as phase separation, mechanical reinforcement. The results shed light on establishing elementary structure, property and function relationship of polymer nanocomposites.


Subject(s)
Mechanical Phenomena , Nanocomposites/chemistry , Polymers/chemistry , Compressive Strength , Nanoparticles/chemistry , Stress, Mechanical , Tensile Strength
19.
Nanoscale ; 8(30): 14625-32, 2016 Aug 14.
Article in English | MEDLINE | ID: mdl-27431975

ABSTRACT

Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice adhesion strength by an aqueous water layer, and provide atomistic details that support previous experimental studies. Our results contribute quantitative comparison of nanoscale adhesion strength of ice on hydrophobic and hydrophilic surfaces, and supply for the first time theoretical references for understanding the mechanics at the atomistic origins of macroscale ice adhesion.

20.
BMC Biol ; 13: 3, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25592740

ABSTRACT

BACKGROUND: The discharge of the Cnidarian stinging organelle, the nematocyst, is one of the fastest processes in biology and involves volume changes of the highly pressurised (150 bar) capsule of up to 50%. Hitherto, the molecular basis for the unusual biomechanical properties of nematocysts has been elusive, as their structure was mainly defined as a stress-resistant collagenous matrix. RESULTS: Here, we characterise Cnidoin, a novel elastic protein identified as a structural component of Hydra nematocysts. Cnidoin is expressed in nematocytes of all types and immunostainings revealed incorporation into capsule walls and tubules concomitant with minicollagens. Similar to spider silk proteins, to which it is related at sequence level, Cnidoin possesses high elasticity and fast coiling propensity as predicted by molecular dynamics simulations and quantified by force spectroscopy. Recombinant Cnidoin showed a high tendency for spontaneous aggregation to bundles of fibrillar structures. CONCLUSIONS: Cnidoin represents the molecular factor involved in kinetic energy storage and release during the ultra-fast nematocyst discharge. Furthermore, it implies an early evolutionary origin of protein elastomers in basal metazoans.


Subject(s)
Elastomers/chemistry , Nematocyst/physiology , Silk/chemistry , Amino Acid Sequence , Animals , Blotting, Western , Collagen/metabolism , Elasticity , Gene Expression Regulation , Hydra/physiology , Hydrophobic and Hydrophilic Interactions , Immunohistochemistry , Microscopy, Atomic Force , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Aggregates , Protein Structure, Tertiary , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Silk/ultrastructure , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...