Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
J Med Chem ; 56(10): 4053-70, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23597064

ABSTRACT

Structural analysis of both the MDM2-p53 protein-protein interaction and several small molecules bound to MDM2 led to the design and synthesis of tetrasubstituted morpholinone 10, an MDM2 inhibitor with a biochemical IC50 of 1.0 µM. The cocrystal structure of 10 with MDM2 inspired two independent optimization strategies and resulted in the discovery of morpholinones 16 and 27 possessing distinct binding modes. Both analogues were potent MDM2 inhibitors in biochemical and cellular assays, and morpholinone 27 (IC50 = 0.10 µM) also displayed suitable PK profile for in vivo animal experiments. A pharmacodynamic (PD) experiment in mice implanted with human SJSA-1 tumors showed p21(WAF1) mRNA induction (2.7-fold over vehicle) upon oral dosing of 27 at 300 mg/kg.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Tumor Suppressor Protein p53/antagonists & inhibitors , Animals , Circular Dichroism , Crystallography , Crystallography, X-Ray , Drug Design , Female , Humans , Indicators and Reagents , Mice , Mice, Nude , Models, Molecular , Morpholines/chemical synthesis , Morpholines/pharmacology , Piperidines/chemical synthesis , Piperidines/pharmacology , Stereoisomerism , Structure-Activity Relationship , Xenograft Model Antitumor Assays
2.
Structure ; 21(5): 798-809, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23602659

ABSTRACT

Sphingosine kinase 1 (SphK1) is a lipid kinase that catalyzes the conversion of sphingosine to sphingosine-1-phosphate (S1P), which has been shown to play a role in lymphocyte trafficking, angiogenesis, and response to apoptotic stimuli. As a central enzyme in modulating the S1P levels in cells, SphK1 emerges as an important regulator for diverse cellular functions and a potential target for drug discovery. Here, we present the crystal structures of human SphK1 in the apo form and in complexes with a substrate sphingosine-like lipid, ADP, and an inhibitor at 2.0-2.3 Å resolution. The SphK1 structures reveal a two-domain architecture in which its catalytic site is located in the cleft between the two domains and a hydrophobic lipid-binding pocket is buried in the C-terminal domain. Comparative analysis of these structures with mutagenesis and kinetic studies provides insight into how SphK1 recognizes the lipid substrate and catalyzes ATP-dependent phosphorylation.


Subject(s)
Lysophospholipids/chemistry , Sphingosine/analogs & derivatives , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Catalysis , Crystallography, X-Ray , Humans , Kinetics , Lysophospholipids/metabolism , Molecular Sequence Data , Phosphorylation , Protein Conformation , Sphingosine/chemistry , Sphingosine/metabolism , Substrate Specificity
3.
Bioorg Med Chem Lett ; 23(5): 1238-44, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23374866

ABSTRACT

The discovery, structure-based design, synthesis, and optimization of NIK inhibitors are described. Our work began with an HTS hit, imidazopyridinyl pyrimidinamine 1. We utilized homology modeling and conformational analysis to optimize the indole scaffold leading to the discovery of novel and potent conformationally constrained inhibitors such as compounds 25 and 28. Compounds 25 and 31 were co-crystallized with NIK kinase domain to provide structural insights.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Alkynes/chemical synthesis , Alkynes/chemistry , Alkynes/pharmacology , Amines/chemical synthesis , Amines/chemistry , Amines/pharmacology , Drug Design , HT29 Cells , Humans , Hydrogen Bonding , Imidazoles/chemical synthesis , Imidazoles/chemistry , Imidazoles/pharmacology , Models, Molecular , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship , NF-kappaB-Inducing Kinase
5.
Anal Biochem ; 421(2): 368-77, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22056947

ABSTRACT

Protein kinases are recognized as important drug targets due to the pivotal roles they play in human disease. Many kinase inhibitors are ATP competitive, leading to potential problems with poor selectivity and significant loss of potency in vivo due to cellular ATP concentrations being much higher than K(m). Consequently, there has been growing interest in the development of ATP-noncompetitive inhibitors to overcome these problems. There are challenges to identifying ATP-noncompetitive inhibitors from compound library screens because ATP-noncompetitive inhibitors are often weaker and commonly excluded by potency-based hit selection criteria in favor of abundant and highly potent ATP-competitive inhibitors in screening libraries. Here we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for protein kinase cyclin-dependent kinase 4 (CDK4) and the identification of ATP-noncompetitive inhibitors by high-throughput screening after employing a strategy to favor this type of inhibitors. We also present kinetic characterization that is consistent with the proposed mode of inhibition.


Subject(s)
Adenosine Triphosphate/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Fluorescence Resonance Energy Transfer/methods , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Chromatography, High Pressure Liquid , Cyclin-Dependent Kinase 4/metabolism , Humans , Kinetics , Mass Spectrometry , Models, Molecular
6.
Bioorg Med Chem Lett ; 21(8): 2460-7, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21414780

ABSTRACT

We discovered novel pyrrolidine MCHR1 antagonist 1 possessing moderate potency. Profiling of pyrrolidine 1 demonstrated that it was an inhibitor of the hERG channel. Investigation of the structure-activity relationship of this class of pyrrolidines allowed us to optimize the MCHR1 potency and decrease the hERG inhibition. Increasing the acidity of the amide proton by converting the benzamide in lead 1 to an anilide provided single digit nanomolar MCHR1 antagonists while replacing the dimethoxyphenyl ring of 1 with alkyl groups possessing increased polarity dramatically reduced the hERG inhibition.


Subject(s)
Ether-A-Go-Go Potassium Channels/metabolism , Pyrrolidines/chemistry , Receptors, Somatostatin/antagonists & inhibitors , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Humans , Pyrrolidines/chemical synthesis , Pyrrolidines/pharmacology , Receptors, Somatostatin/metabolism , Stereoisomerism , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 18(24): 6352-6, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18993068

ABSTRACT

A new series of pyrazolo[3,4-d]pyrimidine-3,6-diamines was designed and synthesized as potent and selective inhibitors of the nonreceptor tyrosine kinase, ACK1. These compounds arose from efforts to rigidify an earlier series of N-aryl pyrimidine-5-carboxamides. The synthesis and structure-activity relationships of this new series of inhibitors are reported. The most promising compounds were also profiled for their pharmacokinetic properties.


Subject(s)
Diamines/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/chemistry , Pyrimidines/chemistry , Animals , Chemistry, Pharmaceutical/methods , Crystallography, X-Ray/methods , Drug Design , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Male , Models, Chemical , Molecular Conformation , Protein-Tyrosine Kinases/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
8.
J Biomol Screen ; 13(8): 737-47, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18660457

ABSTRACT

G-protein-coupled receptors (GPCRs) represent one of the largest gene families in the human genome and have long been regarded as valuable targets for small-molecule drugs. The authors describe a new functional assay that directly monitors GPCR activation. It is based on the interaction between beta-arrestin and ligand-activated GPCRs and uses enzyme fragment complementation technology. In this format, a GPCR of interest is fused to a small (approximately 4 kDa), optimized alpha fragment peptide (termed ProLink) derived from beta-galactosidase, and beta-arrestin is fused to an N-terminal deletion mutant of beta-galactosidase (termed the enzyme acceptor [EA]). Upon activation of the receptor, the beta-arrestin-EA fusion protein binds the activated GPCR. This interaction drives enzyme fragment complementation, resulting in an active beta-galactosidase enzyme, and thus GPCR activation can be determined by quantifying beta-galactosidase activity. In this report, the authors demonstrate the utility of this technology to monitor GPCR activation and validate the approach using a Galphai-coupled GPCR, somatostatin receptor 2. Potential application to high-throughput screens in both agonist and antagonist screening modes is exemplified.


Subject(s)
Arrestins/metabolism , Biological Assay/methods , Peptides/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Somatostatin/metabolism , Animals , Arrestins/genetics , Cell Line , Humans , Peptides/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Somatostatin/agonists , Receptors, Somatostatin/antagonists & inhibitors , Receptors, Somatostatin/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Reproducibility of Results , Somatostatin/genetics , Somatostatin/metabolism , beta-Arrestins , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
10.
Comb Chem High Throughput Screen ; 11(3): 195-215, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18336213

ABSTRACT

GPCRs had significant representation in the drug discovery portfolios of most major commercial drug discovery organizations for many years. This is due in part to the diverse biological roles mediated by GPCRs as a class, as well as the empirical discovery that they have proven relatively tractable to the development of small molecule therapeutics. Publication of the human genome sequence in 2001 confirmed GPCRs as the largest single gene superfamily with more than 700 members, furthering the already strong appeal of addressing this target class using efficient and highly parallelized platform approaches. The GPCR research platform implemented at Amgen is used as a case study to review the evolution and implementation of available assays and technologies applicable to GPCR drug discovery. The strengths, weaknesses, and applications of assay technologies applicable to G alpha s, G alpha i and G alpha q-coupled receptors are described and their relative merits evaluated. Particular consideration is made of the role and practice of "de-orphaning" and signaling pathway characterization as a pre-requisite to establishing effective screens. In silico and in vitro methodology developed for rapid, parallel high throughput hit characterization and prioritization is also discussed extensively.


Subject(s)
Drug Evaluation, Preclinical/methods , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Arrestins/analysis , Calcium Signaling/drug effects , Cyclic AMP/analysis , Humans , Ligands , Receptors, G-Protein-Coupled/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Small Molecule Libraries/pharmacology , beta-Arrestins
11.
Anal Biochem ; 376(1): 122-30, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18294446

ABSTRACT

Malonyl-CoA decarboxylase (MCD) catalyzes the conversion of malonyl-CoA to acetyl-CoA and thereby regulates malonyl-CoA levels in cells. Malonyl-CoA is a potent inhibitor of mitochondrial carnitine palmitoyltransferase-1, a key enzyme involved in the mitochondrial uptake of fatty acids for oxidation. Abnormally high rates of fatty acid oxidation contribute to ischemic damage. Inhibition of MCD leads to increased malonyl-CoA and therefore decreases fatty acid oxidation, representing a novel approach for the treatment of ischemic heart injury. The commonly used MCD assay monitors the production of NADH fluorometrically, which is not ideal for library screening due to potential fluorescent interference by certain compounds. Here we report a luminescence assay for MCD activity. This assay is less susceptible to fluorescent interference by compounds. Furthermore, it is 150-fold more sensitive, with a detection limit of 20 nM acetyl-CoA, compared to 3 muM in the fluorescence assay. This assay is also amenable to automation for high-throughput screening and yields excellent assay statistics (Z' > 0.8). In addition, it can be applied to the screening for inhibitors of any other enzymes that generate acetyl-CoA.


Subject(s)
Carboxy-Lyases/analysis , Luminescence , Luminescent Measurements/methods , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Chromatography, High Pressure Liquid/methods , Fluorescence , Humans , Kinetics , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Reproducibility of Results
12.
Anal Biochem ; 367(2): 179-89, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17592719

ABSTRACT

Several drugs inhibiting protein kinases have been launched successfully, demonstrating the attractiveness of protein kinases as therapeutic targets. Functional genomics research within both academia and industry has led to the identification of many more kinases as potential drug targets. Although a number of well-known formats are used for measuring protein kinase activity, some less well-characterized protein kinases identified through functional genomics present particular challenges for existing assay formats when there is limited knowledge of the endogenous substrates or activation mechanisms for these novel kinase targets. This is especially the case when a very sensitive assay is required to differentiate often highly potent inhibitors developed by late-stage medicinal chemistry programs. ACK1 is a non-receptor tyrosine kinase that has been shown to be involved in tumorigenesis and metastasis. Here we describe the development of an extremely sensitive high-throughput assay for ACK1 capable of detecting 240 fmol per well of the kinase reaction product employing a BV-tag-based electrochemiluminescence assay. This assay is universally applicable to protein tyrosine kinases using a BV-tag-labeled monoclonal antibody against phosphotyrosine. Furthermore, this assay can be extended to the evaluation of Ser/Thr kinases in those cases where an antibody recognizing the phospho-product is available.


Subject(s)
Luminescent Measurements/methods , Protein-Tyrosine Kinases/analysis , Antibodies, Monoclonal , Electrochemistry/methods , Kinetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Ruthenium Compounds/chemistry , Sensitivity and Specificity
13.
Comb Chem High Throughput Screen ; 8(2): 181-95, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15777182

ABSTRACT

The pivotal role of kinases in signal transduction and cellular regulation has lent them considerable appeal as pharmacological targets across a broad spectrum of pathologies. Since the discovery that the v-Src oncogene encoded a protein kinase in 1978, kinases have remained a focus of research for pharmaceutical laboratories and academic groups alike. Many have sought to develop orally available low molecular weight synthetic kinase modulators (predominantly inhibitors) and thus capitalize on the links between aberrant regulation and disease. This interest in kinases as drug targets was fueled in recent years by the success of several kinase inhibitors in the clinic, primarily Gleevec for the treatment of chronic myelogenous leukemia and Iressa for the treatment of advanced non-small cell lung cancer. This review focuses on the development of small molecule drugs, most of them binding in or close to the ATP binding pocket. After some general considerations regarding the selection of a particular kinase for drug discovery, we will discuss the encouraging lessons learned from some of the kinase inhibitors currently in various stages of development. The majority of this review is dedicated to a detailed description and discussion of the various assay formats currently being employed for high throughput screening.


Subject(s)
Drug Design , Peptide Library , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Signal Transduction/drug effects , Animals , Avian Sarcoma Viruses/metabolism , Binding Sites , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Lung Neoplasms/pathology , Mass Screening , Protein Kinase Inhibitors/chemical synthesis , Protein Kinases/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL