Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 334
Filter
2.
Angew Chem Int Ed Engl ; : e202405560, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787342

ABSTRACT

Radical-involved multicomponent difunctionalization of 1,3-dienes has recently emerged as a promising strategy for rapid synthesis of valuable allylic compounds in one-pot operation. However, the expansion of radical scope and enantiocontrol remain two major challenges. Herein, we describe an unprecedented photoinduced copper-catalyzed highly enantioselective three-component radical 1,2-azidooxygenation of 1,3-dienes with readily available azidobenziodazolone reagent and carboxylic acids. This mild protocol exhibits a broad substrate scope, high functional group tolerance, and exceptional control over chemo-, regio- and enantioselectivity, providing practical access to diverse valuable azidated chiral allylic esters. Mechanistic studies imply that the chiral copper complex is implicated as a bifunctional catalyst in both the photoredox catalyzed azidyl radical generation and enantioselective radical C-O cross-coupling.

3.
Chem Res Toxicol ; 37(4): 561-570, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38534178

ABSTRACT

Loss-of-function mutations in the Breast Cancer Susceptibility Gene (BRCA1 and BRCA2) are often detected in patients with breast cancer. Poly(ADP-ribose) polymerase-1 (PARP1) plays a key role in the repair of DNA strand breaks, and PARP inhibitors have been shown to induce highly selective killing of BRCA1/2-deficient tumor cells, a mechanism termed synthetic lethality. In our previous study, a novel PARP1 inhibitor─(E)-2-(2,3-dibromo-4,5-dimethoxybenzylidene)-N-(4-fluorophenyl) hydrazine-1-carbothioamide (4F-DDC)─was synthesized, which significantly inhibited PARP1 activity with an IC50 value of 82 ± 9 nM. The current study aimed to explore the mechanism(s) underlying the antitumor activity of 4F-DDC under in vivo and in vitro conditions. 4F-DDC was found to selectively inhibit the proliferation of BRCA mutant cells, with highly potent effects on HCC-1937 (BRCA1-/-) cells. Furthermore, 4F-DDC was found to induce apoptosis and G2/M cell cycle arrest in HCC-1937 cells. Interestingly, immunofluorescence and Western blot results showed that 4F-DDC induced DNA double strand breaks and further activated the cGAS-STING pathway in HCC-1937 cells. In vivo analysis results revealed that 4F-DDC inhibited the growth of HCC-1937-derived tumor xenografts, possibly via the induction of DNA damage and activation of the cGAS-STING pathway. In summary, the current study provides a new perspective on the antitumor mechanism of PARP inhibitors and showcases the therapeutic potential of 4F-DDC in the treatment of breast cancer.


Subject(s)
Breast Neoplasms , Humans , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , DNA Damage , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerases/pharmacology
4.
J Med Chem ; 67(5): 3244-3273, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38421819

ABSTRACT

Camptothecin (CPT) is a potent anti-cancer agent targeting topoisomerase I (TOP1). However, CPT has poor pharmacokinetic properties, causes toxicities, and leads to drug resistance, which limit its clinical use. In this paper, to review the current state of CPT research. We first briefly explain CPT's TOP1 inhibition mechanism and the key hurdles in CPT drug development. Then we examine strategies to overcome CPT's limitations through structural modifications and advanced delivery systems. Though modifications alone seem insufficient to fully enhance CPT's therapeutic potential, structure-activity relationship analysis provides insights to guide optimization of CPT analogs. In comparison, advanced delivery systems integrating controlled release, imaging capabilities, and combination therapies via stimulus-responsive linkers and targeting moieties show great promise for improving CPT's pharmacological profile. Looking forward, multifaceted approaches combining selective CPT derivatives with advanced delivery systems, informed by emerging biological insights, hold promise for fully unleashing CPT's anti-cancer potential.


Subject(s)
Antineoplastic Agents, Phytogenic , Camptothecin , Camptothecin/pharmacology , Camptothecin/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/chemistry , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/therapeutic use , DNA Topoisomerases, Type I/metabolism
5.
J Am Chem Soc ; 146(2): 1410-1422, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38179949

ABSTRACT

Alkene radical ions constitute an integral and unique class of reactive intermediates for the synthesis of valuable compounds because they have both unpaired spins and charge. However, relatively few synthetic applications of alkene radical anions have emerged due to a dearth of generally applicable and mild radical anion generation approaches. Precise control over the chemo- and stereoselectivity in alkene radical anion-mediated processes represents another long-standing challenge due to their high reactivity. To overcome these issues, here, we develop a new redox-neutral strategy that seamlessly merges photoredox and copper catalysis to enable the controlled generation of alkene radical anions and their orthogonal enantioselective cyanofunctionalization via distonic-like species. This new strategy enables highly regio-, chemo-, and enantioselective hydrocyanation, deuterocyanation, and cyanocarboxylation of alkenes without stoichiometric reductants or oxidants under visible light irradiation. This protocol provides a new blueprint for the exploration of the transformation potential of alkene radical anions.

6.
Angew Chem Int Ed Engl ; 63(13): e202319728, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38285535

ABSTRACT

Organic molecules bearing chiral sulfur stereocenters exert a great impact on asymmetric catalysis and synthesis, chiral drugs, and chiral materials. Compared with acyclic ones, the catalytic asymmetric synthesis of thio-heterocycles has largely lagged behind due to the lack of efficient synthetic strategies. Here we establish the first modular platform to access chiral thio-oxazolidinones via Pd-catalyzed asymmetric [3+2] annulations of vinylethylene carbonates with sulfinylanilines. This protocol is featured by readily available starting materials, and high enantio- and diastereoselectivity. In particular, an unusual effect of a non-chiral supporting ligand on the diastereoselectivity was observed. Possible reaction mechanisms and stereocontrol models were proposed.

7.
Chemistry ; 30(10): e202303476, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38065837

ABSTRACT

The construction of an all-in-one catalyst, in which the photosensitizer and the transition metal site are close to each other, is important for improving the efficiency of metallaphotoredox catalysis. However, the development of convenient synthetic strategies for the precise construction of an all-in-one catalyst remains a challenging task due to the requirement of precise installation of the catalytic sites. Herein, we have successfully established a facile bottom-up strategy for the direct synthesis of Ni(II)-incorporated covalent organic framework (COF), named LZU-713@Ni, as a versatile all-in-one metallaphotoredox catalyst. LZU-713@Ni showed excellent activity and recyclability in the photoredox/nickel-catalyzed C-O, C-S, and C-P cross-coupling reactions. Notably, this catalyst displayed a better catalytic activity than its homogeneous analogues, physically mixed dual catalyst system, and, especially, LZU-713/Ni which was prepared through post-synthetic modification. The improved catalytic efficiency of LZU-713@Ni should be attributed to the implementation of bottom-up strategy, which incorporated the fixed, ordered, and abundant catalytic sites into its framework. This work sheds new light on the exploration of concise and effective strategies for the construction of multifunctional COF-based photocatalysts.

8.
Small Methods ; 8(1): e2301131, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37906050

ABSTRACT

Radiotherapy (RT) has been a classical therapeutic method of cancer for several decades. It attracts tremendous attention for the precise and efficient treatment of local tumors with stimuli-responsive nanomaterials, which enhance RT. However, there are few systematic reviews summarizing the newly emerging stimuli-responsive mechanisms and strategies used for tumor radio-sensitization. Hence, this review provides a comprehensive overview of recently reported studies on stimuli-responsive nanomaterials for radio-sensitization. It includes four different approaches for sensitized RT, namely endogenous response, exogenous response, dual stimuli-response, and multi stimuli-response. Endogenous response involves various stimuli such as pH, hypoxia, GSH, and reactive oxygen species (ROS), and enzymes. On the other hand, exogenous response encompasses X-ray, light, and ultrasound. Dual stimuli-response combines pH/enzyme, pH/ultrasound, and ROS/light. Lastly, multi stimuli-response involves the combination of pH/ROS/GSH and X-ray/ROS/GSH. By elaborating on these responsive mechanisms and applying them to clinical RT diagnosis and treatment, these methods can enhance radiosensitive efficiency and minimize damage to surrounding normal tissues. Finally, this review discusses the additional challenges and perspectives related to stimuli-responsive nanomaterials for tumor radio-sensitization.


Subject(s)
Nanostructures , Neoplasms , Humans , Reactive Oxygen Species , Neoplasms/radiotherapy , Neoplasms/drug therapy , Nanostructures/therapeutic use
9.
Adv Sci (Weinh) ; 11(3): e2306728, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38018506

ABSTRACT

Vinyldiazo compounds are one of the most important synthons in the construction of a cyclic ring. Most photochemical transformations of vinyldiazo compounds are mainly focusing on utilization of their C═C bond site, while reactions taking place at terminal nitrogen atom are largely unexplored. Herein, a photocatalytic cascade radical cyclization of LBRs with vinyldiazo reagents through sequential B─N/C─N bond formation is described. The reaction starts with the addition of LBRs (Lewis base-boryl radicals) at diazo site, followed by intramolecular radical cyclization to access a wide range of important boron-handled pyrazoles in good to excellent yields. Control experiments, together with detailed mechanism studies well explain the observed reactivity. Further studies demonstrate the utility of this approach for applications in pharmaceutical and agrochemical research.

10.
World J Gastroenterol ; 29(44): 5894-5906, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38111507

ABSTRACT

BACKGROUND: Donor-recipient size mismatch (DRSM) is considered a crucial factor for poor outcomes in liver transplantation (LT) because of complications, such as massive intraoperative blood loss (IBL) and early allograft dysfunction (EAD). Liver volumetry is performed routinely in living donor LT, but rarely in deceased donor LT (DDLT), which amplifies the adverse effects of DRSM in DDLT. Due to the various shortcomings of traditional manual liver volumetry and formula methods, a feasible model based on intelligent/interactive qualitative and quantitative analysis-three-dimensional (IQQA-3D) for estimating the degree of DRSM is needed. AIM: To identify benefits of IQQA-3D liver volumetry in DDLT and establish an estimation model to guide perioperative management. METHODS: We retrospectively determined the accuracy of IQQA-3D liver volumetry for standard total liver volume (TLV) (sTLV) and established an estimation TLV (eTLV) index (eTLVi) model. Receiver operating characteristic (ROC) curves were drawn to detect the optimal cut-off values for predicting massive IBL and EAD in DDLT using donor sTLV to recipient sTLV (called sTLVi). The factors influencing the occurrence of massive IBL and EAD were explored through logistic regression analysis. Finally, the eTLVi model was compared with the sTLVi model through the ROC curve for verification. RESULTS: A total of 133 patients were included in the analysis. The Changzheng formula was accurate for calculating donor sTLV (P = 0.083) but not for recipient sTLV (P = 0.036). Recipient eTLV calculated using IQQA-3D highly matched with recipient sTLV (P = 0.221). Alcoholic liver disease, gastrointestinal bleeding, and sTLVi > 1.24 were independent risk factors for massive IBL, and drug-induced liver failure was an independent protective factor for massive IBL. Male donor-female recipient combination, model for end-stage liver disease score, sTLVi ≤ 0.85, and sTLVi ≥ 1.32 were independent risk factors for EAD, and viral hepatitis was an independent protective factor for EAD. The overall survival of patients in the 0.85 < sTLVi < 1.32 group was better compared to the sTLVi ≤ 0.85 group and sTLVi ≥ 1.32 group (P < 0.001). There was no statistically significant difference in the area under the curve of the sTLVi model and IQQA-3D eTLVi model in the detection of massive IBL and EAD (all P > 0.05). CONCLUSION: IQQA-3D eTLVi model has high accuracy in predicting massive IBL and EAD in DDLT. We should follow the guidance of the IQQA-3D eTLVi model in perioperative management.


Subject(s)
End Stage Liver Disease , Liver Transplantation , Humans , Male , Female , Liver Transplantation/adverse effects , Living Donors , Retrospective Studies , End Stage Liver Disease/diagnosis , End Stage Liver Disease/surgery , End Stage Liver Disease/etiology , Severity of Illness Index , Risk Factors , Graft Survival
11.
Radiat Oncol ; 18(1): 189, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974211

ABSTRACT

PURPOSE: To discuss the optimal treatment modality for inoperable locally advanced Non-Small Cell Lung Cancer patients with poor physical status, impaired cardio-pulmonary function, and negative driver genes, and provide clinical evidence. MATERIALS AND METHODS: Retrospective analysis of 62 cases of locally advanced non-small cell lung cancer patients with negative driver genes treated at Tsukuba University Hospital(Japan) and Qingdao University Affiliated Hospital(China).The former received proton therapy with concurrent chemotherapy, referred to as the proton group, with 25 cases included; while the latter underwent X-ray therapy with concurrent chemoradiotherapy followed by 1 year of sequential immunomodulatory maintenance therapy, referred to as the X-ray group, with 37 cases included.The treatment response and adverse reactions were assessed using RECIST v1.1 criteria and CTCAE v3.0, and radiotherapy planning and evaluation of organs at risk were performed using the CB-CHOP method.All data were subjected to statistical analysis using GraphPad Prism v9.0, with a T-test using P < 0.05 considered statistically significant. RESULTS: (1)Target dose distribution: compared to the X-ray group, the proton group exhibited smaller CTV and field sizes, with a more pronounced bragg peak.(2)Organs at risk dose: When comparing the proton group to the X-ray group, lung doses (V5, V20, MLD) and heart doses (V40, Dmax) were lower, with statistical significance (P < 0.05), while spinal cord and esophagus doses showed no significant differences between the two groups (P > 0.05).(3)Treatment-related toxicities: The incidence of grade 3 or higher adverse events in the proton group and X-ray group was 28.6% and 4.2%, respectively, with a statistically significant difference (P < 0.05). In terms of the types of adverse events, the proton group primarily experienced esophagitis and pneumonia, while the X-ray group primarily experienced pneumonia, esophagitis, and myocarditis. Both groups did not experience radiation myelitis or esophagotracheal fistula.(4)Efficacy evaluation: The RR in the proton group and X-ray group was 68.1% and 70.2%, respectively (P > 0.05), and the DCR was 92.2% and 86.4%, respectively (P > 0.05), indicating no significant difference in short-term efficacy between the two treatment modalities.(5)Survival status: The PFS in the proton group and X-ray group was 31.6 ± 3.5 months (95% CI: 24.7 ~ 38.5) and 24.9 ± 1.55 months (95% CI: 21.9 ~ 27.9), respectively (P > 0.05), while the OS was 51.6 ± 4.62 months (95% CI: 42.5 ~ 60.7) and 33.1 ± 1.99 months (95% CI: 29.2 ~ 37.1), respectively (P < 0.05).According to the annual-specific analysis, the PFS rates for the first to third years in both groups were as follows: 100%, 56.1% and 32.5% for the proton group vs. 100%, 54.3% and 26.3% for the X-ray group. No statistical differences were observed at each time point (P > 0.05).The OS rates for the first to third years in both groups were as follows: 100%, 88.2%, 76.4% for the proton group vs. 100%, 91.4%, 46.3% for the X-ray group. There was no significant difference in the first to second years (P > 0.05), but the third year showed a significant difference (P < 0.05). Survival curve graphs also depicted a similar trend. CONCLUSION: There were no significant statistical differences observed between the two groups in terms of PFS and OS within the first two years. However, the proton group demonstrated a clear advantage over the X-ray group in terms of adverse reactions and OS in the third year. This suggests a more suitable treatment modality and clinical evidence for populations with frail health, compromised cardio-pulmonary function, post-COVID-19 sequelae, and underlying comorbidities.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Esophagitis , Lung Neoplasms , Pneumonia , Proton Therapy , Humans , Proton Therapy/adverse effects , Protons , Retrospective Studies , Chemoradiotherapy/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Esophagitis/etiology , Pneumonia/complications , Pneumonia/drug therapy , Combined Modality Therapy
12.
Angew Chem Int Ed Engl ; 62(51): e202312102, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37936319

ABSTRACT

The exploration of value-added conversions of naturally abundant amino acids has received considerable attention from the synthetic community. Compared with the well-established asymmetric decarboxylative transformation, the asymmetric deaminative transformation of amino acids still remains a formidable challenge, mainly due to the lack of effective strategies for the C-N bond activation and the potential incompatibility with chiral catalysts. Here, we disclose a photoinduced Cu-catalyzed asymmetric deaminative coupling reaction of amino acids with arylboronic acids. This new protocol provides a series of significant chiral phenylacetamides in generally good yields and excellent stereoselectivity under mild and green conditions (42-85 % yields, up to 97 % ee). Experimental investigations and theoretical calculations were performed to reveal the crucial role of additional phenols in improving catalytic efficiency and enantiocontrol.

13.
Sci Rep ; 13(1): 16642, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37789017

ABSTRACT

The coronavirus disease 2019 (COVID-19), which affects multiple organs, is causing an unprecedented global public health crisis. Most COVID-19 patients recover gradually upon appropriate interventions. Viruses were reported to utilize the small extracellular vesicles (sEVs), containing a cell-specific cargo of proteins, lipids, and nucleic acids, to escape the attack from the host's immune system. This study aimed to examine the sEVs lipid profile of plasma of recovered COVID-19 patients (RCs). Plasma sEVs were separated from 83 RCs 3 months after discharge without underlying diseases, including 18 recovered asymptomatic patients (RAs), 32 recovered moderate patients (RMs), and 33 recovered severe and critical patients (RSs), and 19 healthy controls (HCs) by Total Exosome Isolation Kit. Lipids were extracted from sEVs and then subjected to targeted liquid chromatography-mass spectrometry. The size, concentration, and distribution of sEVs did not differ in RCs and HCs as validated by transmission electron microscopy, nanoparticle tracking analysis, and immunoblot analysis. Fifteen subclasses of 508 lipids were detected in plasma sEVs from HCs, RAs, RMs, and RSs, such as phosphatidylcholines (PCs) and diacylglycerols (DAGs), etc. Total lipid intensity displayed downregulation in RCs compared with HCs. The relative abundance of DAGs gradually dropped, whereas PCs, lysophosphatidylcholines, and sphingomyelins were higher in RCs relative to HCs, especially in RSs. 88 lipids out of 241 in sEVs of RCs were significantly different and a conspicuous increase was revealed with disease status. The sEVs lipids alternations were found to be significantly correlated with the clinical indices in RCs and HCs, suggesting that the impact of COVID-19 on lipid metabolism lingered for a long time. The lipid abnormalities bore an intimate link with glycerophospholipid metabolism and glycosylphosphatidylinositol anchor biosynthesis. Furthermore, the lipidomic analysis showed that RCs were at higher risk of developing diabetes and sustaining hepatic impairment. The abnormality of immunomodulation in RCs might still exist. The study may offer new insights into the mechanism of organ dysfunction and help identify novel therapeutic targets in the RCs.


Subject(s)
COVID-19 , Exosomes , Extracellular Vesicles , Humans , Lipid Metabolism , Diglycerides
14.
Anal Chim Acta ; 1279: 341769, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37827669

ABSTRACT

MicroRNA (miRNA) has gained significant attention as a potential biomarker for cancer clinics, and there is an urgent need for developing sensing strategies with high selectivity, sensitivity, and low background. In vitro diagnosis based on Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated protein (CRISPR/Cas) technology could simplify the detection procedure, improve sensitivity and selectivity, and has broad application prospects as the next-generation molecular diagnosis technology. We propose a novel dual signal amplification strategy, called CENTER, which integrates the CRISPR/Cas12a system, an entropy-driven DNA signaling network, and strand displacement amplification to achieve ultrasensitive detection of miR-141, a potential marker for prostate cancer. The experimental results demonstrate that CENTER can distinguish single nucleotide mutations, and the strategy exhibits a good linear calibration curve ranging from 100 aM to 1 pM. Due to dual signal amplification, the detection limit is as low as 34 aM. We proposed a method for identifying miR-141 expressed in human serum and successfully distinguished between prostate cancer patients (n = 20) and healthy individuals (n = 15) with an impressive accuracy of 94%. Overall, CENTER shows great promise for the detection of miRNA.


Subject(s)
Biosensing Techniques , MicroRNAs , Prostatic Neoplasms , Male , Humans , MicroRNAs/genetics , CRISPR-Cas Systems , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Calibration , Entropy
15.
J Control Release ; 361: 547-567, 2023 09.
Article in English | MEDLINE | ID: mdl-37567504

ABSTRACT

Sonodynamic therapy (SDT) has gained significant attention in the treatment of deep tumors and multidrug-resistant (MDR) bacterial infections due to its high tissue penetration depth, high spatiotemporal selectivity, and noninvasive therapeutic method. SDT combines low-intensity ultrasound (US) and sonosensitizers to produce lethal reactive oxygen species (ROS) and external damage, which is the main mechanism behind this therapy. However, traditional organic small-molecule sonosensitizers display poor water solubility, strong phototoxicity, and insufficient targeting ability. Inorganic sonosensitizers, on the other hand, have low ROS yield and poor biocompatibility. These drawbacks have hindered SDT's clinical transformation and application. Hence, designing stimuli-responsive nano-sonosensitizers that make use of the lesion's local microenvironment characteristics and US stimulation is an excellent alternative for achieving efficient, specific, and safe treatment. In this review, we provide a comprehensive overview of the currently accepted mechanisms in SDT and discuss the application of responsive nano-sonosensitizers in the treatment of tumor and bacterial infections. Additionally, we emphasize the significance of the principle and process of response, based on the classification of response patterns. Finally, this review emphasizes the potential limitations and future perspectives of SDT that need to be addressed to promote its clinical transformation.


Subject(s)
Neoplasms , Ultrasonic Therapy , Humans , Reactive Oxygen Species , Neoplasms/therapy , Neoplasms/pathology , Theranostic Nanomedicine , Cell Line, Tumor , Tumor Microenvironment
16.
Front Oncol ; 13: 1221309, 2023.
Article in English | MEDLINE | ID: mdl-37601678

ABSTRACT

Purpose: To report two cases of hepatic cavernous hemangioma, a rare complication, in patients with locally advanced and advanced non-squamous non-small cell lung cancer (NSCLC) treated with PD-1 inhibitors. Additionally, to share clinical experiences related to the management of this condition. Methods: Two patients with locally advanced and advanced non-squamous non-small cell lung cancer (NSCLC) were enrolled in our hospital. Following the NCCN guidelines and expert consensus, both patients received standard treatment with Camrelizumab (PD-1 inhibitor). Subsequent abdominal CT scans revealed hepatic focal lesions that did not exhibit typical characteristics of metastatic tumors. Therefore, further systematic investigation was conducted to study the hepatic focal lesions. Results: (1) Ultrasound-guided percutaneous biopsy confirmed the diagnosis of hepatic cavernous hemangioma. A multidisciplinary consultation concluded that it was an adverse drug reaction to Camrelizumab. (2) Ten-gene testing for both patients did not reveal any driver gene mutations associated with lung cancer. Apart from the occurrence of hepatic cavernous hemangioma, there were no signs of disease progression or worsening. (3) Both patients had resolution of hepatic cavernous hemangioma after switching to alternative PD-1 inhibitors or discontinuing PD-1 inhibitor treatment. One patient experienced hemorrhage related to the hepatic hemangioma, which was managed with hemostasis and symptomatic treatment, resulting in improvement. (4) Clinical outcomes: The first patient achieved a progression-free survival (PFS) of 33 months in first-line treatment and had not reached the PFS endpoint in second-line treatment, with an overall survival exceeding 56 months. The second patient had not reached the PFS endpoint in first-line treatment, with an overall survival exceeding 31 months. Conclusion: Hepatic cavernous hemangioma is a rare and serious adverse reaction associated with PD-1 inhibitors. Camrelizumab may interact with the PD-1 molecule in a different manner compared to other PD-1 inhibitors, affecting the regulation of the VEGFR/ULBP2 signaling pathway. In future studies, next-generation sequencing may provide detailed molecular pathology information, which could help explain individual differences and provide a basis for the prevention or intervention of hepatic cavernous hemangioma.

17.
Angew Chem Int Ed Engl ; 62(41): e202309460, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37615886

ABSTRACT

Radical single carbonylation reactions with CO constitute a direct and robust strategy toward various carbonyl compounds from readily available chemicals, and have been extensively studied over the past decades. However, realizing highly selective catalytic systems for controlled radical double carbonylation reactions has remained a substantial challenge, particularly for the more advanced multicomponent variants, despite their great potential value. Herein, we report a visible-light-driven radical relay five-component radical double aminocarbonylation reaction of unactivated alkenes using CO under metal-free conditions. This protocol provides direct access to valuable γ-trifluoromethyl α-ketoamides with good yields and high chemoselectivity. Crucial was the identification of distinct dual roles of amine coupling partners, sequentially acting as electron donors for the formation of photoactive electron donor-acceptor (EDA) complexes with radical precursors and then as a CO acceptor via nitrogen radical cations to form carbamoyl radicals. Cross-coupling of carbamoyl radicals with the acyl radicals that are formed in an alkene-based relay process affords double aminocarbonylation products.

18.
World J Diabetes ; 14(7): 1057-1076, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37547579

ABSTRACT

BACKGROUND: Patients with diabetes mellitus are at higher risk of myocardial ischemia/ reperfusion injury (MI/RI). Shuxin decoction (SXT) is a proven recipe modi-fication from the classic herbal formula "Wu-tou-chi-shi-zhi-wan" according to the traditional Chinese medicine theory. It has been successfully used to alleviate secondary MI/RI in patients with diabetes mellitus in the clinical setting. However, the underlying mechanism is still unclear. AIM: To further determine the mechanism of SXT in attenuating MI/RI associated with diabetes. METHODS: This paper presents an ensemble model combining network pharmacology and biology. The Traditional Chinese Medicine System Pharmacology Database was accessed to select key components and potential targets of the SXT. In parallel, therapeutic targets associated with MI/RI in patients with diabetes were screened from various databases including Gene Expression Omnibus, DisGeNet, Genecards, Drugbank, OMIM, and PharmGKB. The potential targets of SXT and the therapeutic targets related to MI/RI in patients with diabetes were intersected and subjected to bioinformatics analysis using the Database for Annotation, Visualization and Integrated Discovery. The major results of bioinformatics analysis were subsequently validated by animal experiments. RESULTS: According to the hypothesis derived from bioinformatics analysis, SXT could possibly ameliorate lipid metabolism disorders and exert anti-apoptotic effects in MI/RI associated with diabetes by reducing oxidized low density lipoprotein (LDL) and inhibiting the advanced glycation end products (AGE)-receptor for AGE (RAGE) signaling pathway. Subsequent animal experiments confirmed the hypothesis. The treatment with a dose of SXT (2.8 g/kg/d) resulted in a reduction in oxidized LDL, AGEs, and RAGE, and regulated the level of blood lipids. Besides, the expression of apoptosis-related proteins such as Bax and cleaved caspase 3 was down-regulated, whereas Bcl-2 expression was up-regulated. The findings indicated that SXT could inhibit myocardial apoptosis and improve cardiac function in MI/RI in diabetic rats. CONCLUSION: This study indicated the active components and underlying molecular therapeutic mechanisms of SXT in MI/RI with diabetes. Moreover, animal experiments verified that SXT could regulate the level of blood lipids, alleviate cardiomyocyte apoptosis, and improve cardiac function through the AGE-RAGE signaling pathway.

19.
J Am Chem Soc ; 145(32): 17527-17550, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37531466

ABSTRACT

The C-O bond is ubiquitous in biologically active molecules, pharmaceutical agents, and functional materials, thereby making it an important functional group. Consequently, the development of C-O bond-forming reactions using catalytic strategies has become an increasingly important research topic in organic synthesis because more conventional methods involving strong base and acid have many limitations. In contrast to the ionic-pathway-based methods, copper-promoted radical-mediated C-O bond formation is experiencing a surge in research interest owing to a renaissance in free-radical chemistry and photoredox catalysis. This Perspective highlights and appraises state-of-the-art techniques in this burgeoning research field. The contents are organized according to the different reaction types and working models.

20.
Eur J Med Chem ; 257: 115535, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37285684

ABSTRACT

Angiogenesis is the biological process in which existing blood vessels generate new ones and it is essential for body growth and development, wound healing, and granulation tissue formation. Vascular endothelial growth factor receptor (VEGFR) is a crucial cell membrane receptor that binds to VEGF to regulate angiogenesis and maintenance. Dysregulation of VEGFR signaling can lead to several diseases, such as cancer and ocular neovascular disease, making it a crucial research area for disease treatment. Currently, anti-VEGF drugs commonly used in ophthalmology are mainly four macromolecular drugs, Bevacizumab, Ranibizumab, Conbercept and Aflibercept. Although these drugs are relatively effective in treating ocular neovascular diseases, their macromolecular properties, strong hydrophilicity, and poor blood-eye barrier penetration limit their efficacy. However, VEGFR small molecule inhibitors possess high cell permeability and selectivity, allowing them to traverse and bind to VEGF-A specifically. Consequently, they have a shorter duration of action on the target, and they offer significant therapeutic benefits to patients in the short term. Consequently, there is a need to develop small molecule inhibitors of VEGFR to target ocular neovascularization diseases. This review summarizes the recent developments in potential VEGFR small molecule inhibitors for the targeted treatment of ocular neovascularization diseases, with the aim of providing insights for future studies on VEGFR small molecule inhibitors.


Subject(s)
Angiogenesis Inhibitors , Neoplasms , Humans , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Vascular Endothelial Growth Factor A , Neovascularization, Pathologic/drug therapy , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...