Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Pathogens ; 10(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922765

ABSTRACT

Prion is an infectious protein (PrPSc) that is derived from a cellular glycoprotein (PrPC) through a conformational transition and associated with a group of prion diseases in animals and humans. Characterization of proteinase K (PK)-resistant PrPSc by western blotting has been critical to diagnosis and understanding of prion diseases including Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker (GSS) disease in humans. However, formation as well as biochemical and biological properties of the glycoform-selective PrPSc in variably protease-sensitive prionopathy (VPSPr) remain poorly understood. Here we reveal that formation of the ladder-like PrPSc in VPSPr is a PK-dependent two-step process, which is enhanced by basic pH. Two sets of PrPSc fragments can be identified with antibodies directed against an intermediate or a C-terminal domain of the protein. Moreover, antibodies directed against specific PrP glycoforms reveal faster electrophoretic migrations of PrP fragments mono-glycosylated at residue 181 and 197 in VPSPr than those in sporadic CJD (sCJD). Finally, RT-QuIC assay indicates that PrPSc-seeding activity is lower and its lag time is longer in VPSPr than in sCJD. Our results suggest that the glycoform-selective PrPSc in VPSPr is associated with altered glycosylation, resulting in different PK-truncation and aggregation seeding activity compared to PrPSc in sCJD.

2.
Acta Neuropathol Commun ; 8(1): 85, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32560672

ABSTRACT

One of remarkable features of sporadic Creutzfeldt-Jakob disease (sCJD) is the great phenotypic variability. Understanding the molecular basis of this variability has important implications for the development of therapeutic approaches. It is well established that, in many cases, phenotypic heterogeneity of sCJD is under control of two determinants: the genotype at the methionine (M)/valine (V) polymorphic codon 129 of the human prion protein gene and the type, 1 or 2, of the pathogenic and disease-related form of the prion protein, PrPD. However, this scenario fails to explain the existence of distinct heterozygous sCJDMV2 subtypes, where heterogeneity occurs without any variation of the 129 allotype and PrPD type. One of these subtypes, denoted sCJDMV2C, associated with PrPD type 2, is characterized by widespread spongiform degeneration of the cerebral cortex (C). The second variant, denoted sCJDMV2K, features prominent deposition of PrPD amyloid forming kuru type (K) plaques. Here we used a mass spectrometry based approach to test the hypothesis that phenotypic variability within the sCJDMV2 subtype is at least partly determined by the abundance of 129 M and 129 V polymorphic forms of proteinase K-resistant PrPD (resPrPD). Consistent with this hypothesis, our data demonstrated a strong correlation of the MV2C and MV2K phenotypes with the relative populations of protease-resistant forms of the pathogenic prion proteins, resPrPD-129 M and resPrPD-129 V, where resPrPD-129 M dominated in the sCJDMV2C variant and resPrPD-129 V in the sCJDMV2K variant. This finding suggests an important, previously unrecognized mechanism for phenotypic determination in human prion diseases.


Subject(s)
Creutzfeldt-Jakob Syndrome/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Prion Proteins/metabolism , Cerebellum/metabolism , Cerebellum/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Epitope Mapping , Humans , Mass Spectrometry , Methionine/chemistry , Phenotype , Prion Proteins/chemistry , Valine/chemistry
3.
Acta Neuropathol Commun ; 7(1): 85, 2019 05 29.
Article in English | MEDLINE | ID: mdl-31142381

ABSTRACT

Despite their phenotypic heterogeneity, most human prion diseases belong to two broadly defined groups: Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker disease (GSS). While the structural characteristics of the disease-related proteinase K-resistant prion protein (resPrPD) associated with the CJD group are fairly well established, many features of GSS-associated resPrPD are unclear. Electrophoretic profiles of resPrPD associated with GSS variants typically show 6-8 kDa bands corresponding to the internal PrP fragments as well as a variable number of higher molecular weight bands, the molecular nature of which has not been investigated. Here we have performed systematic studies of purified resPrPD species extracted from GSS cases with the A117V (GSSA117V) and F198S (GSSF198S) PrP gene mutations. The combined analysis based on epitope mapping, deglycosylation treatment and direct amino acid sequencing by mass spectrometry provided a conclusive evidence that high molecular weight resPrPD species seen in electrophoretic profiles represent covalently-linked multimers of the internal ~ 7 and ~ 8 kDa fragments. This finding reveals a mechanism of resPrPD aggregate formation that has not been previously established in prion diseases.


Subject(s)
Brain/metabolism , Gerstmann-Straussler-Scheinker Disease/metabolism , PrPSc Proteins/chemistry , Epitope Mapping , Gerstmann-Straussler-Scheinker Disease/genetics , Humans , Mutation , PrPSc Proteins/genetics , PrPSc Proteins/isolation & purification
4.
Structure ; 27(2): 229-240.e4, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30581045

ABSTRACT

The N-terminal transactivation domain (NTD) of estrogen receptor alpha, a well-known member of the family of intrinsically disordered proteins, mediates the receptor's transactivation function. However, an accurate molecular dissection of NTD's structure-function relationships remains elusive. Here, we show that the NTD adopts a mostly disordered, unexpectedly compact conformation that undergoes structural expansion on chemical denaturation. By combining small-angle X-ray scattering, hydroxyl radical protein footprinting, and computational modeling, we derive the ensemble-structures of the NTD and determine its ensemble-contact map revealing metastable long-range contacts, e.g., between residues I33 and S118. We show that mutation at S118, a known phosphorylation site, promotes conformational changes and increases coactivator binding. We further demonstrate via fluorine-19 (19F) nuclear magnetic resonance that mutations near I33 alter 19F chemical shifts at S118, confirming the proposed I33-S118 contact in the ensemble of structural disorder. These findings extend our understanding of how specific contact metastability mediates critical functions of disordered proteins.


Subject(s)
Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/metabolism , Mutation , Estrogen Receptor alpha/genetics , Fluorine-19 Magnetic Resonance Imaging , Humans , Isoleucine/genetics , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Scattering, Small Angle , Serine/genetics , Transcriptional Activation , X-Ray Diffraction
5.
J Biol Chem ; 293(48): 18494-18503, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30275016

ABSTRACT

Prion diseases are neurodegenerative disorders that affect many mammalian species. Mammalian prion proteins (PrPs) can misfold into many different aggregates. However, only a small subpopulation of these structures is infectious. One of the major unresolved questions in prion research is identifying which specific structural features of these misfolded protein aggregates are important for prion infectivity in vivo Previously, two types of proteinase K-resistant, self-propagating aggregates were generated from the recombinant mouse prion protein in the presence of identical cofactors. Although these two aggregates appear biochemically very similar, they have dramatically different biological properties, with one of them being highly infectious and the other one lacking any infectivity. Here, we used several MS-based structural methods, including hydrogen-deuterium exchange and hydroxyl radical footprinting, to gain insight into the nature of structural differences between these two PrP aggregate types. Our experiments revealed a number of specific differences in the structure of infectious and noninfectious aggregates, both at the level of the polypeptide backbone and quaternary packing arrangement. In particular, we observed that a high degree of order and stability of ß-sheet structure within the entire region between residues ∼89 and 227 is a primary attribute of infectious PrP aggregates examined in this study. By contrast, noninfectious PrP aggregates are characterized by markedly less ordered structure up to residue ∼167. The structural constraints reported here should facilitate development of experimentally based high-resolution structural models of infectiosus mammalian prions.


Subject(s)
Prions/chemistry , Prions/metabolism , Animals , Bacterial Outer Membrane Proteins/chemistry , Biocatalysis , Mass Spectrometry , Mice , Oxidation-Reduction , Prions/chemical synthesis , Prions/genetics , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Structure, Secondary
6.
Nat Commun ; 9(1): 2166, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29867164

ABSTRACT

The molecular mechanism that determines under physiological conditions transmissibility of the most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD) is unknown. We report the synthesis of new human prion from the recombinant human prion protein expressed in bacteria in reaction seeded with sCJD MM1 prions and cofactor, ganglioside GM1. These synthetic human prions were infectious to transgenic mice expressing non-glycosylated human prion protein, causing neurologic dysfunction after 459 and 224 days in the first and second passage, respectively. The neuropathology, replication potency, and biophysical profiling suggest that a novel, particularly neurotoxic human prion strain was created. Distinct biological and structural characteristics of our synthetic human prions suggest that subtle changes in the structural organization of critical domains, some linked to posttranslational modifications of the pathogenic prion protein (PrPSc), play a crucial role as a determinant of human prion infectivity, host range, and targetting of specific brain structures in mice models.


Subject(s)
Creutzfeldt-Jakob Syndrome/metabolism , PrPSc Proteins/metabolism , Prion Proteins/metabolism , Prions/metabolism , Animals , Brain/metabolism , Creutzfeldt-Jakob Syndrome/genetics , Disease Models, Animal , Humans , Mice, Transgenic , PrPSc Proteins/genetics , Prion Proteins/genetics , Prions/genetics , Survival Analysis
7.
Oncotarget ; 8(33): 53888-53898, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28903310

ABSTRACT

Caveolin-1 is a major component protein of the caveolae-a type of flask shaped, 50-100 nm, nonclathrin-coated, microdomain present in the plasma membrane of most mammalian cells. Caveolin-1 functions as a scaffolding protein to organize and concentrate signaling molecules within the caveolae, which may be associated with its unique physicochemical properties including oligomerization, acquisition of detergent insolubility, and association with cholesterol. Here we demonstrate that caveolin-1 is detected in all brain areas examined and recovered in both detergent-soluble and -insoluble fractions. Surprisingly, the recovered molecules from the two different fractions share a similar molecular size ranging from 200 to 2,000 kDa, indicated by gel filtration. Furthermore, both soluble and insoluble caveolin-1 molecules generate a proteinase K (PK)-resistant C-terminal core fragment upon the PK-treatment, by removing ˜36 amino acids from the N-terminus of the protein. Although it recognizes caveolin-1 from A431 cell lysate, an antibody against the C-terminus of caveolin-1 fails to detect the brain protein by Western blotting, suggesting that the epitope in the brain caveolin-1 is concealed. No significant differences in the physicochemical properties of caveolin-1 between uninfected and prion-infected brains are observed.

8.
Sci Rep ; 7: 43295, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28272426

ABSTRACT

Misfolded prion protein aggregates (PrPSc) show remarkable structural diversity and are associated with highly variable disease phenotypes. Similarly, other proteins, including amyloid-ß, tau, α-synuclein, and serum amyloid A, misfold into distinct conformers linked to different clinical diseases through poorly understood mechanisms. Here we use mice expressing glycophosphatidylinositol (GPI)-anchorless prion protein, PrPC, together with hydrogen-deuterium exchange coupled with mass spectrometry (HXMS) and a battery of biochemical and biophysical tools to investigate how post-translational modifications impact the aggregated prion protein properties and disease phenotype. Four GPI-anchorless prion strains caused a nearly identical clinical and pathological disease phenotype, yet maintained their structural diversity in the anchorless state. HXMS studies revealed that GPI-anchorless PrPSc is characterized by substantially higher protection against hydrogen/deuterium exchange in the C-terminal region near the N-glycan sites, suggesting this region had become more ordered in the anchorless state. For one strain, passage of GPI-anchorless prions into wild type mice led to the emergence of a novel strain with a unique biochemical and phenotypic signature. For the new strain, histidine hydrogen-deuterium mass spectrometry revealed altered packing arrangements of ß-sheets that encompass residues 139 and 186 of PrPSc. These findings show how variation in post-translational modifications may explain the emergence of new protein conformations in vivo and also provide a basis for understanding how the misfolded protein structure impacts the disease.


Subject(s)
Pregnancy Proteins/chemistry , Pregnancy Proteins/metabolism , Prion Diseases/pathology , Protein Processing, Post-Translational , Animals , Mice , Phenotype , Protein Conformation
9.
PLoS Pathog ; 11(4): e1004832, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25875953

ABSTRACT

The infectious pathogen responsible for prion diseases is the misfolded, aggregated form of the prion protein, PrPSc. In contrast to recent progress in studies of laboratory rodent-adapted prions, current understanding of the molecular basis of human prion diseases and, especially, their vast phenotypic diversity is very limited. Here, we have purified proteinase resistant PrPSc aggregates from two major phenotypes of sporadic Creutzfeldt-Jakob disease (sCJD), determined their conformational stability and replication tempo in vitro, as well as characterized structural organization using recently emerged approaches based on hydrogen/deuterium (H/D) exchange coupled with mass spectrometry. Our data clearly demonstrate that these phenotypically distant prions differ in a major way with regard to their structural organization, both at the level of the polypeptide backbone (as indicated by backbone amide H/D exchange data) as well as the quaternary packing arrangements (as indicated by H/D exchange kinetics for histidine side chains). Furthermore, these data indicate that, in contrast to previous observations on yeast and some murine prion strains, the replication rate of sCJD prions is primarily determined not by conformational stability but by specific structural features that control the growth rate of prion protein aggregates.


Subject(s)
Creutzfeldt-Jakob Syndrome , PrPSc Proteins/chemistry , Blotting, Western , Humans , Immunoassay , Mass Spectrometry , Phenotype , Protein Stability , Protein Structure, Quaternary
10.
Oncotarget ; 6(2): 642-50, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25460507

ABSTRACT

In transmission studies with Alzheimer's disease (AD) animal models, the formation of Aß plaques is proposed to be initiated by seeding the inoculated amyloid ß (Aß) peptides in the brain. Like the misfolded scrapie prion protein (PrPSc) in prion diseases, Aß in AD shows a certain degree of resistance to protease digestion while the biochemical basis for protease resistance of Aß remains poorly understood. Using in vitro assays, histoblotting, and electron microscopy, we characterize the biochemical and morphological features of synthetic Aß peptides and Aß isolated from AD brain tissues. Consistent with previous observations, monomeric and oligomeric Aß species extracted from AD brains are insoluble in detergent buffers and resistant to digestions with proteinase K (PK). Histoblotting of AD brain tissue sections exhibits an increased Aß immunoreactivity after digestion with PK. In contrast, synthetic Aß40 and Aß42 are soluble in detergent buffers and fully digested by PK. Electron microscopy of Aß40 and Aß42 synthetic peptides shows that both species of Aß form mature fibrils. Those generated from Aß40 are longer but less numerous than those made of Aß42. When spiked into human brain homogenates, both Aß40 and Aß42 acquire insolubility in detergent and resistance to PK. Our study favors the hypothesis that the human brain may contain cofactor(s) that confers the synthetic Aß peptides PrPSc-like physicochemical properties.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/administration & dosage , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/pathology , Prions/metabolism , Aged , Aged, 80 and over , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic
12.
Emerg Infect Dis ; 20(12): 2006-14, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25418590

ABSTRACT

Variably protease-sensitive prionopathy (VPSPr), a recently identified and seemingly sporadic human prion disease, is distinct from Creutzfeldt-Jakob disease (CJD) but shares features of Gerstmann-Sträussler-Scheinker disease (GSS). However, contrary to exclusively inherited GSS, no prion protein (PrP) gene variations have been detected in VPSPr, suggesting that VPSPr might be the long-sought sporadic form of GSS. The VPSPr atypical features raised the issue of transmissibility, a prototypical property of prion diseases. We inoculated VPSPr brain homogenate into transgenic mice expressing various levels of human PrP (PrPC). On first passage, 54% of challenged mice showed histopathologic lesions, and 34% harbored abnormal PrP similar to that of VPSPr. Surprisingly, no prion disease was detected on second passage. We concluded that VPSPr is transmissible; thus, it is an authentic prion disease. However, we speculate that normal human PrPC is not an efficient conversion substrate (or mouse brain not a favorable environment) and therefore cannot sustain replication beyond the first passage.


Subject(s)
Prion Diseases/transmission , Animals , Brain/metabolism , Brain/pathology , Case-Control Studies , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Plaque, Amyloid/pathology , Prion Diseases/genetics , Prion Diseases/pathology , Prions/genetics , Prions/metabolism
13.
J Clin Cell Immunol ; 5(4)2014 Aug.
Article in English | MEDLINE | ID: mdl-25419482

ABSTRACT

Differentiating iatrogenic Creutzfeldt-Jakob disease (iCJD) from sporadic CJD (sCJD) would be useful for the identification and prevention of human-to-human prion transmission. Currently, the diagnosis of iCJD depends on identification of a recognized source of contamination to which patients have been exposed, in addition to fulfilling basic requirements for the establishment of diagnosis of CJD. Attempts to identify differences in clinical manifestations, neuropathological changes and pathological prion protein (PrPSc) between iCJD and sCJD have been unsuccessful. In the present study, using a variety of more sophisticated methods including sucrose step gradient sedimentation, conformational stability immunoassay, protein misfolding cyclic amplification (PMCA), fragment-mapping, and transmission study, we show no significant differences in gel profiles, oligomeric state, conformational stability and infectivity of PrPSc between iCJD and sCJD. However, using PMCA, we find that convertibility and amplification efficiency of PrPSc is greater in iCJD than in sCJD in a polymorphism-dependent manner. Moreover, two protease-resistant PrP C-terminal fragments (termed PrP-CTF12/13) were detected in all 9 cases of sCJD but not in 6 of 8 cases of iCJD tested in this study. The use of fragment mapping- and PMCA-based assays thus provides a means to distinguish most cases of iCJD from sCJD.

14.
Sci Rep ; 3: 2911, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24105336

ABSTRACT

Prion diseases are associated with the conformational conversion of the cellular prion protein (PrP(C)) into the pathological scrapie isoform (PrP(Sc)) in the brain. Both the in vivo and in vitro conversion of PrP(C) into PrP(Sc) is significantly inhibited by differences in amino acid sequence between the two molecules. Using protein misfolding cyclic amplification (PMCA), we now report that the recombinant full-length human PrP (rHuPrP23-231) (that is unglycosylated and lacks the glycophosphatidylinositol anchor) is a strong inhibitor of human prion propagation. Furthermore, rHuPrP23-231 also inhibits mouse prion propagation in a scrapie-infected mouse cell line. Notably, it binds to PrP(Sc), but not PrP(C), suggesting that the inhibitory effect of recombinant PrP results from blocking the interaction of brain PrP(C) with PrP(Sc). Our findings suggest a new avenue for treating prion diseases, in which a patient's own unglycosylated and anchorless PrP is used to inhibit PrP(Sc) propagation without inducing immune response side effects.


Subject(s)
Brain/pathology , Neuroblastoma/pathology , PrPC Proteins/metabolism , PrPSc Proteins/metabolism , Prions/metabolism , Recombinant Proteins/metabolism , Scrapie/pathology , Animals , Brain/metabolism , Glycosylation , Humans , In Vitro Techniques , Mice , Neuroblastoma/metabolism , PrPC Proteins/genetics , PrPSc Proteins/genetics , Prion Proteins , Prions/genetics , Protein Folding , Recombinant Proteins/genetics , Scrapie/metabolism , Species Specificity
15.
PLoS One ; 8(3): e58786, 2013.
Article in English | MEDLINE | ID: mdl-23527023

ABSTRACT

The four glycoforms of the cellular prion protein (PrP(C)) variably glycosylated at the two N-linked glycosylation sites are converted into their pathological forms (PrP(Sc)) in most cases of sporadic prion diseases. However, a prominent molecular characteristic of PrP(Sc) in the recently identified variably protease-sensitive prionopathy (VPSPr) is the absence of a diglycosylated form, also notable in familial Creutzfeldt-Jakob disease (fCJD), which is linked to mutations in PrP either from Val to Ile at residue 180 (fCJD(V180I)) or from Thr to Ala at residue 183 (fCJD(T183A)). Here we report that fCJD(V180I), but not fCJD(T183A), exhibits a proteinase K (PK)-resistant PrP (PrP(res)) that is markedly similar to that observed in VPSPr, which exhibits a five-step ladder-like electrophoretic profile, a molecular hallmark of VPSPr. Remarkably, the absence of the diglycosylated PrP(res) species in both fCJD(V180I) and VPSPr is likewise attributable to the absence of PrP(res) glycosylated at the first N-linked glycosylation site at residue 181, as in fCJD(T183A). In contrast to fCJD(T183A), both VPSPr and fCJD(V180I) exhibit glycosylation at residue 181 on di- and monoglycosylated (mono181) PrP prior to PK-treatment. Furthermore, PrP(V180I) with a typical glycoform profile from cultured cells generates detectable PrP(res) that also contains the diglycosylated PrP in addition to mono- and unglycosylated forms upon PK-treatment. Taken together, our current in vivo and in vitro studies indicate that sporadic VPSPr and familial CJD(V180I) share a unique glycoform-selective prion formation pathway in which the conversion of diglycosylated and mono181 PrP(C) to PrP(Sc) is inhibited, probably by a dominant-negative effect, or by other co-factors.


Subject(s)
Prion Diseases/metabolism , Prions/metabolism , Brain/metabolism , Brain/pathology , Cell Line , Cell Membrane/metabolism , Creutzfeldt-Jakob Syndrome/metabolism , Endopeptidase K/metabolism , Endoplasmic Reticulum/metabolism , Glycosylation , Humans , Polysaccharides/chemistry , Prions/chemistry , Proteolysis , Valine/chemistry
16.
Aging (Albany NY) ; 5(3): 155-73, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23515139

ABSTRACT

Insertion of 144-base pair (bp) containing six extra octapeptide repeats between residues 51 and 91 of prion protein (PrP) gene is associated with inherited prion diseases. Most cases linked to this insertion examined by Western blotting showed detectable proteinase K-resistant PrPSc (rPrPSc) resembling PrPSc type 1 and type 2 in sporadic Creutzfeldt-Jakob disease (sCJD), or PrP7-8 in Gerstmann-Sträussler-Scheinker disease. However, cases lacking detectable rPrPSc also have been reported. Which PrP conformer is associated with neuropathological changes in the cases without detectable rPrPSc remains to be determined. Here we report that while all six but one subjects with the 144-bp insertion mutations examined display the pathognomonic PrP patches in the cerebellum, one of them exhibits no detectable typical rPrPSc even in PrPSc-enriched preparations. Instead, a large amount of abnormal PrP is captured from this case by gene 5 protein and sodium phosphotungstate, reagents that have been proved to specifically capture abnormal PrP. All captured abnormal PrP from the cerebellum and other brain regions is virtually sensitive to PK-digestion (termed sPrPSc). The presence of the predominant sPrPSc but absence of rPrPSc in this 144-bp insertion-linked inherited CJD case suggests that mutant sPrPSc is the main component of the PrP deposit patches and sPrPSc is sufficient to cause neurotoxicity and prion disease.


Subject(s)
Brain/pathology , Mutagenesis, Insertional , Prion Diseases/genetics , Prions/genetics , Adult , Brain/metabolism , Female , Humans , Middle Aged , Prion Diseases/metabolism , Prion Diseases/pathology , Prions/metabolism
17.
Pathogens ; 2(3): 457-71, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-25437202

ABSTRACT

Human prion diseases, including sporadic, familial, and acquired forms such as Creutzfeldt-Jakob disease (CJD), are caused by prions in which an abnormal prion protein (PrPSc) derived from its normal cellular isoform (PrPC) is the only known component. The recently-identified variably protease-sensitive prionopathy (VPSPr) is characterized not only by an atypical clinical phenotype and neuropathology but also by the deposition in the brain of a peculiar PrPSc. Like other forms of human prion disease, the pathogenesis of VPSPr also currently remains unclear. However, the findings of the peculiar features of prions from VPSPr and of the possible association of VPSPr with a known genetic prion disease linked with a valine to isoleucine mutation at residue 180 of PrP reported recently, may be of great importance in enhancing our understanding of not only this atypical human prion disease in particular, but also other prion diseases in general. In this review, we highlight the physicochemical and biological properties of prions from VPSPr and discuss the pathogenesis of VPSPr including the origin and formation of the peculiar prions.

18.
J Vis Exp ; (68)2012 Oct 03.
Article in English | MEDLINE | ID: mdl-23070047

ABSTRACT

The central event in the pathogenesis of prion diseases involves a conversion of the host-encoded cellular prion protein PrP(C) into its pathogenic isoform PrP(Sc 1). PrP(C) is detergent-soluble and sensitive to proteinase K (PK)-digestion, whereas PrP(Sc) forms detergent-insoluble aggregates and is partially resistant to PK(2-6). The conversion of PrP(C) to PrP(Sc) is known to involve a conformational transition of α-helical to ß-sheet structures of the protein. However, the in vivo pathway is still poorly understood. A tentative endogenous PrP(Sc), intermediate PrP* or "silent prion", has yet to be identified in the uninfected brain(7). Using a combination of biophysical and biochemical approaches, we identified insoluble PrP(C) aggregates (designated iPrP(C)) from uninfected mammalian brains and cultured neuronal cells(8, 9). Here, we describe detailed procedures of these methods, including ultracentrifugation in detergent buffer, sucrose step gradient sedimentation, size exclusion chromatography, iPrP enrichment by gene 5 protein (g5p) that specifically bind to structurally altered PrP forms(10), and PK-treatment. The combination of these approaches isolates not only insoluble PrP(Sc) and PrP(C) aggregates but also soluble PrP(C) oligomers from the normal human brain. Since the protocols described here have been used to isolate both PrP(Sc) from infected brains and iPrP(C) from uninfected brains, they provide us with an opportunity to compare differences in physicochemical features, neurotoxicity, and infectivity between the two isoforms. Such a study will greatly improve our understanding of the infectious proteinaceous pathogens. The physiology and pathophysiology of iPrP(C) are unclear at present. Notably, in a newly-identified human prion disease termed variably protease-sensitive prionopathy, we found a new PrP(Sc) that shares the immunoreactive behavior and fragmentation with iPrP(C 11, 12). Moreover, we recently demonstrated that iPrP(C) is the main species that interacts with amyloid-ß protein in Alzheimer disease(13). In the same study, these methods were used to isolate Abeta aggregates and oligomers in Alzheimer's disease(13), suggesting their application to non-prion protein aggregates involved in other neurodegenerative disorders.


Subject(s)
Brain Chemistry , Brain/metabolism , PrPC Proteins/isolation & purification , PrPC Proteins/metabolism , Blotting, Western , Centrifugation/methods , Chromatography, Gel , Humans
19.
J Toxicol Environ Health A ; 74(22-24): 1493-503, 2011.
Article in English | MEDLINE | ID: mdl-22043910

ABSTRACT

Prion diseases are a group of incurable transmissible neurodegenerative disorders. The key molecular event in the pathogenesis of prion diseases is the conversion of the cellular prion protein (PrP(C)) into its pathological isoform (PrP(Sc)), accompanied by a conformational transition of α-helix into ß-sheet structure involving the structured α-helix 1 domain from residues 144-154 of the protein (PrP144-154). Blocking the accessibility of PrP144-152 with anti-PrP antibody 6H4 was found to prevent PrP conversion and even to cure prion infection in cell models ( Enari et al. 2001 ). Previously, Yuan et al. (2005 ) demonstrated that the reduction and alkylation of PrP induced concealment of the 6H4 epitope. This study examined the ability of mechlorethamine (MCT), an alkylating antitumor drug, to conceal the 6H4 epitope and block PrP conversion in the presence of a reducing reagent. Mechlorethamine treatment significantly decreased in vitro amplification of PrP(Sc) in the highly efficient protein misfolding cyclic amplification system. Our findings suggest that MCT may serve as a potential therapeutic agent for prion diseases.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Mechlorethamine/pharmacology , PrPC Proteins/antagonists & inhibitors , PrPC Proteins/chemistry , Animals , Antineoplastic Agents, Alkylating/therapeutic use , Epitopes/immunology , Epitopes/metabolism , Humans , Mechlorethamine/therapeutic use , PrPC Proteins/metabolism , Prion Diseases/drug therapy , Prion Diseases/metabolism , Prion Diseases/pathology , Protein Folding/drug effects , Protein Isoforms , Protein Structure, Secondary/drug effects
20.
Aging (Albany NY) ; 3(10): 968-84, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21990137

ABSTRACT

A distinct conformational transition from the α-helix-rich cellular prion protein (PrPC) into its ß-sheet-rich pathological isoform (PrPSc) is the hallmark of prion diseases, a group of fatal transmissible encephalopathies that includes spontaneous and acquired forms. Recently, a PrPSc-like intermediate form characterized by the formation of insoluble aggregates and protease-resistant PrP species termed insoluble PrPC (iPrPC) has been identified in uninfected mammalian brains and cultured neuronal cells, providing new insights into the molecular mechanism(s) of these diseases. Here, we explore the molecular characteristics of the spontaneously formed iPrPC in cultured neuroblastoma cells expressing wild-type or mutant human PrP linked to two familial prion diseases. We observed that although PrP mutation at either residue 183 from Thr to Ala (PrPT183A) or at residue 198 from Phe to Ser (PrPF198S) affects glycosylation at both N-linked glycosylation sites, the T183A mutation that results in intracellular retention significantly increased the formation of iPrPC. Moreover, while autophagy is increased in F198S cells, it was significantly decreased in T183A cells. Our results indicate that iPrPC may be formed more readily in an intracellular compartment and that a significant increase in PrPT183A aggregation may be attributable to the inhibition of autophagy.


Subject(s)
Prions/chemistry , Prions/metabolism , Protein Structure, Secondary , Algorithms , Animals , Cells, Cultured , Electrophoresis, Gel, Two-Dimensional , Endopeptidase K/metabolism , Glycosylation , Humans , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/metabolism , Molecular Weight , Mutation , Neurons/cytology , Neurons/metabolism , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Prions/genetics
SELECTION OF CITATIONS
SEARCH DETAIL