Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters











Publication year range
1.
Food Res Int ; 192: 114784, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147488

ABSTRACT

The distribution of deoxynivalenol (DON) and its derivatives 3-acetyldeoxynivalenol (3-Ac-DON) and 15-acetyldeoxynivalenol (15-Ac-DON) throughout the wheat processing chain were systemically evaluated by one-to-one corresponding studies of the whole processing chain. DON and its derivatives were determined by liquid chromatography-mass spectrometry (LC-MS/MS) in wheat grains and corresponding wheat bran, wheat flour, and semi-finished and finished wheat flour-based products. This investigation showed that wheat grain processing to wheat flour significantly decreased the levels of DON by approximately 52.7%-68.2%. Wheat flour processing of wheat flour-based products decreased the DON concentration by approximately 7.0%-70.6%. Among the processing methods, biscuit making showed the largest reduction (70.6%). The co-occurrence frequency of DON with low levels of 3-Ac-DON and 15-Ac-DON was significantly greater in wheat grains and wheat bran than in wheat flour. For wheat flour-based products, only the distribution pattern of 3-Ac-DON was observable in processed wheat flour products prepared using grains heavily contaminated with DON. In China, to the best of our knowledge, the processing factors (PFs) of DON in wheat flour and wheat flour-based products were systematically evaluated for the first time. The average PF of DON was 0.35 for wheat flour and the average PFs were 0.37-0.84 for wheat flour-based products, with biscuits having the smallest PF (0.37), indicating DON significantly decreasing in biscuit making. Furthermore, dietary exposure assessment of DON indicated an acceptable overall health risk in Chinese consumers, with the highest exposure being observed in infants and young children. This study provides important references for classified management of DON limits in wheat and its various products in China.


Subject(s)
Flour , Food Contamination , Food Handling , Tandem Mass Spectrometry , Trichothecenes , Triticum , Trichothecenes/analysis , Triticum/chemistry , Flour/analysis , Food Contamination/analysis , Food Handling/methods , Chromatography, Liquid , Humans , China
2.
Imeta ; 3(4): e198, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39135685

ABSTRACT

The duck gastrointestinal tract (GIT) harbors an abundance of microorganisms that play an important role in duck health and production. Here, we constructed the first relatively comprehensive duck gut microbial gene catalog (24 million genes) and 4437 metagenome-assembled genomes using 375 GIT metagenomic samples from four different duck breeds across five intestinal segments under two distinct rearing conditions. We further characterized the intestinal region-specific microbial taxonomy and their assigned functions, as well as the temporal development and maturation of the duck gut microbiome. Our metagenomic analysis revealed the similarity within the microbiota of the foregut and hindgut compartments, but distinctive taxonomic and functional differences between distinct intestinal segments. In addition, we found a significant shift in the microbiota composition of newly hatched ducks (3 days), followed by increased diversity and enhanced stability across growth stages (14, 42, and 70 days), indicating that the intestinal microbiota develops into a relatively mature and stable community as the host duck matures. Comparing the impact of different rearing conditions (with and without water) on duck cecal microbiota communities and functions, we found that the bacterial capacity for lipopolysaccharide biosynthesis was significantly increased in ducks that had free access to water, leading to the accumulation of pathogenic bacteria and antibiotic-resistance genes. Taken together, our findings expand the understanding of the microbiome signatures linked to intestinal regional, temporal development, and rearing conditions in ducks, which highlight the significant impact of microbiota on poultry health and production.

3.
Food Chem ; 460(Pt 3): 140797, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39128367

ABSTRACT

The spoilage of refrigerated pork involves nutrient depletion and the production of spoilage metabolites by spoilage bacteria, yet the microbe-metabolite interactions during this process remain unclear. This study employed 16S rRNA high-throughput sequencing and non-targeted metabolomics based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to reveal the core microbiota and metabolite profiles of pork during refrigeration. A total of 45 potential biomarkers were screened through random forest model analysis. Metabolic pathway analysis indicated that eleven pathways, including biogenic amine metabolism, pentose metabolism, purine metabolism, pyrimidine metabolism, phospholipid metabolism, and fatty acid degradation, were potential mechanisms of pork spoilage. Correlation analysis revealed nine metabolites-histamine, tyramine, tryptamine, D-gluconic acid, UDP-d-glucose, xanthine, glutamine, phosphatidylcholine, and hexadecanoic acid-as spoilage biomarkers, with Pseudomonas, Serratia, and Photobacterium playing significant roles. This study provides new insights into the changes in microbial and metabolic characteristics during the spoilage of refrigerated pork.

4.
Adv Mater ; : e2405890, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39045923

ABSTRACT

Mild-hyperthermia photothermal therapy (mPTT) has therapeutic potential with minimized damage to normal tissues. However, the poorly vascularized tumor area severely hampers the penetration of photothermal agents (PTAs), resulting in their heterogeneous distribution and the subsequent heterogeneous local temperature during mPTT. The presence of regions below the therapeutic 42 °C threshold can lead to incomplete tumor ablation and potential recurrence. Additionally, tumor anti-apoptosis and cytoprotection pathways, particularly activated thermoresistance, can nullify mild hyperthermia-induced tumor damage. Therefore, a bioinspired photosensitizer decorated with leucine to form biomimetic nanoclusters (CP-PLeu nanoparticles (NPs)) aimed at achieving rapid and homogeneous accumulation in tumors, is introduced. Moreover, CP-PLeu exhibits photodynamic effects that reverse tumor thermoresistance and physiological repair mechanisms, thereby inhibiting tumor resistance to hyperthermia. With the addition of NIR-II laser irradiation, CP-PLeu optimizes the therapeutic efficacy of mPTT and contributes to a minimally invasive therapeutic process for breast cancer. This therapeutic strategy, utilizing a biomimetic photosensitizer for homogeneous distribution of therapeutic temperature and photoactivated reversal of tumor thermoresistance, successfully achieves efficient breast tumor inhibition through an atraumatic mPTT process.

5.
Imeta ; 3(1): e160, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38868506

ABSTRACT

Pig gastrointestinal tracts harbor a heterogeneous and dynamic ecosystem populated with trillions of microbes, enhancing the ability of the host to harvest energy from dietary carbohydrates and contributing to host adipogenesis and fatness. However, the microbial community structure and related mechanisms responsible for the differences between the fatty phenotypes and the lean phenotypes of the pigs remained to be comprehensively elucidated. Herein, we first found significant differences in microbial composition and potential functional capacity among different gut locations in Jinhua pigs with distinct fatness phenotypes. Second, we identified that Jinhua pigs with lower fatness exhibited higher levels of short-chain fatty acids in the colon, highlighting their enhanced carbohydrate fermentation capacity. Third, we explored the differences in expressed carbohydrate-active enzyme (CAZyme) in pigs, indicating their involvement in modulating fat storage. Notably, Clostridium butyricum might be a representative bacterial species from Jinhua pigs with lower fatness, and a significantly higher percentage of its genome was dedicated to CAZyme glycoside hydrolase family 13 (GH13). Finally, a subsequent mouse intervention study substantiated the beneficial effects of C. butyricum isolated from experimental pigs, suggesting that it may possess characteristics that promote the utilization of carbohydrates and hinder fat accumulation. Remarkably, when Jinhua pigs were administered C. butyricum, similar alterations in the gut microbiome and host fatness traits were observed, further supporting the potential role of C. butyricum in modulating fatness. Taken together, our findings reveal previously overlooked links between C. butyricum and CAZyme function, providing insight into the basic mechanisms that connect gut microbiome functions to host fatness.

6.
Chemosphere ; 358: 142241, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705408

ABSTRACT

Chlorothalonil (CTL), an organochloride fungicide applied for decades worldwide, has been found to be present in various matrixes and even accumulates in humans or other mammals through the food chain. Its high residue and diffusion in the environment have severely affected food security and public health. More and more research has considered CTL as a possible toxin to environmental non-target organisms, via influencing multiple systems such as metabolic, developmental, endocrine, genetic, and reproductive pathways. Aquatic organisms and amphibians are the most vulnerable species to CTL exposure, especially during the early period of development. Under experimental conditions, CTL can also have toxic effects on rodents and other non-target organisms. As for humans, CTL exposure is most often reported to be relevant to allergic reactions to the skin and eyes. We hope that this review will improve our understanding of the hazards and risks that CTL poses to non-target organisms and find a strategy for rational use.


Subject(s)
Fungicides, Industrial , Nitriles , Animals , Humans , Aquatic Organisms/drug effects , Environmental Pollutants/toxicity , Fungicides, Industrial/toxicity , Nitriles/toxicity , Risk Assessment
7.
Food Res Int ; 187: 114304, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763623

ABSTRACT

This study evaluated muti-mycotoxins in 199 samples including processed infant foods and raw materials collected randomly from an infant food company and assessed their role in dietary exposure in infants and young children via probabilistic risk assessment. Approximately 79.6 % (74/93) of the processed infant foods and 65.1 % (69/106) of the raw materials were contaminated by mycotoxins, with a mean occurrence level of 3.66-321.8 µg/kg. Deoxynivalenol (DON) and tenuazonic acid (TeA) were the more prevalent mycotoxins detected, based on their higher frequencies and levels across samples. Co-occurrence of more than two mycotoxins was detected in 61.3 % (57/93) of the processed infant foods and 53.8 % (57/106) of the raw materials. Wheat flour and derived products (e.g., infant noodles and infant biscuits) were contaminated with higher contamination levels and a greater variety of mycotoxins than other samples (e.g., infant cereal and rice grains). The estimated daily exposure to OTA, DON, ZEN, and TEN was lower than the corresponding reference health-based guidance values, indicating acceptable health risks. However, the estimated dietary exposure to alternariol monomethyl ether (AME), alternariol (AOH), and tenuazonic acid (TeA) exceeded the corresponding thresholds of toxicological concern values, indicating potential dietary intake risks. Among the various samples, cereals and cereal-based infant foods emerged as the primary contributors to mycotoxin exposure. Further research is advised to address the uncertainties surrounding the toxicity associated with emerging Alternaria mycotoxins and to conduct cumulative risk assessments concerning multiple mycotoxin exposure in infants and young children.


Subject(s)
Dietary Exposure , Food Contamination , Infant Food , Mycotoxins , Mycotoxins/analysis , Risk Assessment , Infant Food/analysis , Humans , Food Contamination/analysis , Infant , China , Dietary Exposure/analysis , Dietary Exposure/adverse effects , Edible Grain/chemistry , Edible Grain/microbiology , Flour/analysis , Trichothecenes/analysis , Food Microbiology
8.
Anim Biosci ; 37(7): 1213-1224, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38665077

ABSTRACT

OBJECTIVE: Enterotypes (ETs) are the clustering of gut microbial community structures, which could serve as indicators of growth performance and carcass traits. However, ETs have been sparsely investigated in waterfowl. The objective of this study was to identify the ileal ETs and explore the correlation of the ETs with growth performance and carcass traits in Muscovy ducks. METHODS: A total of 200 Muscovy ducks were randomly selected from a population of 5,000 ducks at 70-day old, weighed and slaughtered. The growth performance and carcass traits, including body weight, dressed weight and evidenced weight, dressed percentage, percentage of apparent yield, breast muscle weight, leg muscle weight, percentage of leg muscle and percentage of breast muscle, were determined. The contents of ileum were collected for the isolation of DNA and 16S rRNA gene sequencing. The ETs were identified based on the 16S rRNA gene sequencing data and the correlation of the ETs with growth performance and carcass traits was performed by Spearman correlation analysis. RESULTS: Three ETs (ET1, ET2, and ET3) were observed in the ileal microbiota of Muscovy ducks with significant differences in number of features and α-diversity among these ETs (p<0.05). Streptococcus, Candida Arthritis, and Bacteroidetes were the presentative genus in ET1 to ET3, respectively. Correlation analysis revealed that Lactococcus and Bradyrhizobium were significantly correlated with percentage of eviscerated yield and leg muscle weight (p<0.05) while ETs were found to have a close association with percentage of eviscerated yield, leg muscle weight, and percentage of leg muscle in Muscovy ducks. However, the growth performance of ducks with different ETs did not show significant difference (p>0.05). Lactococcus were found to be significantly correlated with leg muscle weight, dressed weight, and percentage of eviscerated yield. CONCLUSION: Our findings revealed a substantial variation in carcass traits associated with ETs in Muscovy ducks. It is implied that ETs might have the potential to serve as a valuable biomarker for assessing duck carcass traits. It would provide novel insights into the interaction of gut microbiota with growth performance and carcass traits of ducks.

9.
Adv Skin Wound Care ; 37(5): 238-242, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38648236

ABSTRACT

GENERAL PURPOSE: To present research investigating the incidence of and risk factors associated with intraoperative pressure injury in patients undergoing neurologic surgery at Xiangya Hospital, Central South University in China. TARGET AUDIENCE: This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and registered nurses with an interest in skin and wound care. LEARNING OBJECTIVES/OUTCOMES: After participating in this educational activity, the participant will:1. Identify the incidence of intraoperative pressure injuries (PIs) in patients undergoing neurologic surgery at Xiangya Hospital, Central South University in China.2. Describe risk factors for intraoperative PI.3. Outline strategies to help mitigate intraoperative PI risk.


Intraoperative pressure injury (PI) development is an adverse event that impacts thousands of patients globally and is associated with extended hospital stays and increased risk of mortality. To investigate the incidence of intraoperative PI in patients undergoing neurologic surgery and identify associated risk factors. A total of 1,728 patients who underwent neurosurgery in Xiangya Hospital, Central South University between January 2021 and December 2022 were included in this retrospective study. The authors collected patients' demographic data and clinical characteristics and used univariate and multivariate regression to evaluate significant PI risk factors. Intraoperative PI was observed in 1.8% of all surgical cases (n = 31). Having a body mass index greater than 24 kg/m2 (odds ratio, 3.87; 95% CI, 1.62­9.23; P = .002), being in a lateral position (odds ratio, 2.53; 95% CI, 1.04­6.17; P = .042) or a prone position (odds ratio, 10.43; 95% CI, 3.37­32.23; P < .001), and having a longer operation time (cutoff point at 7.92 hours for increased risk of PI; odds ratio, 1.36; 95% CI, 1.21­1.53; P < .001) were significant risk factors for intraoperative PI. This study identified three independent risk factors for intraoperative PI development: body position, surgery duration, and high body mass index. These findings can help OR nurses identify patients who are vulnerable to intraoperative PI and provide appropriate preventive measures. For these patients, perioperative protection and frequent microrepositioning during surgery would be indispensable.


Subject(s)
Pressure Ulcer , Humans , Pressure Ulcer/prevention & control , Pressure Ulcer/epidemiology , Pressure Ulcer/etiology , Risk Factors , Adult , China/epidemiology , Male , Female , Incidence , Intraoperative Complications/epidemiology , Intraoperative Complications/prevention & control , Intraoperative Complications/etiology , Middle Aged , Neurosurgical Procedures/adverse effects , Neurosurgical Procedures/methods
10.
Sci Total Environ ; 927: 172078, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38582109

ABSTRACT

Archaea play a crucial role in microbial systems, including driving biochemical reactions and affecting host health by producing methane through hydrogen. The study of swine gut archaea has a positive significance in reducing methane emissions and improving feed utilization efficiency. However, the development and functional changes of archaea in the pig intestines have been overlooked for a long time. In this study, 54 fecal samples were collected from 36 parental pigs (18 boars and 18 pregnant/lactating sows), and 108 fecal samples from 18 offspring pigs during lactation, nursery, growing, and finishing stages were tracked and collected for metagenomic sequencing. We obtained 14 archaeal non-redundant metagenome-assembled genomes (MAGs). These archaea were classified as Methanobacteriota and Thermoplasmatota at the phylum level, and Methanobrevibacter, Methanosphaera, MX-02, and UBA71 at the genus level, involving hydrogenotrophic, methylotrophic, and acetoclastic pathways. The hydrogenotrophic pathway dominated the methanogenesis function, and the vast majority of archaea participated in it. Dietary changes profoundly affected the archaeal composition and methanogenesis function in pigs. The abundance of hydrogen-producing bacteria in parental pigs fed high-fiber diets was higher than that in offspring pigs fed low-fiber diets. The methanogenesis function was positively correlated with fiber decomposition functions and negatively correlated with the starch decomposition function. Increased abundance of sulfate reductase and fumarate reductase, as well as decreased acetate/propionate ratio, indicated that the upregulation of alternative hydrogen uptake pathways competing with methanogens may be the reason for the reduced methanogenesis function. These findings contribute to providing information and direction in the pig industry for the development of strategies to reduce methane emissions, improve feed efficiency, and maintain intestinal health.


Subject(s)
Archaea , Methane , Animals , Methane/metabolism , Archaea/genetics , Swine , Feces/microbiology , Gastrointestinal Microbiome , Animal Feed/analysis , Diet/veterinary , Female , Metagenome
11.
J Adv Res ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38508446

ABSTRACT

INTRODUCTION: Diarrheic disease is a common intestinal health problem worldwide, causing great suffering to humans and animals. Precise manipulation strategies based on probiotics to combat diarrheic diseases have not been fully developed. OBJECTIVES: The aim of this study was to investigate the molecular mechanisms by which probiotics manipulate macrophage against diarrheic disease. METHODS: Metagenome reveals gut microbiome profiles of healthy and diarrheic piglets. Fecal microbial transplantation (FMT) was employed to explore the causal relationship between gut microbes and diarrhea. The protective role of probiotics and their derived extracellular vesicles (EVs) was investigated in ETEC K88-infected mice. Macrophage depletion was performed to assess the role of macrophages in EVs against diarrhea. Execution of in vitro cell co-culture and transcriptome analyses elucidated the molecular mechanisms by which EVs modulate the macrophage and intestinal epithelial barrier. RESULTS: Escherichia coli was enriched in weaned diarrheic piglets, while Lactobacillus johnsonii (L. john) showed a negative correlation with Escherichia coli. The transmission of diarrheic illness symptoms was achieved by transferring fecal microbiota, but not metabolites, from diarrheic pigs to germ-free (GF) mice. L. john's intervention prevented the transmission of disease phenotypes from diarrheic piglets to GF mice. L. john also reduces the gut inflammation induced by ETEC K88. The EVs secreted by L. john demonstrated enhanced efficacy in mitigating the adverse impacts induced by ETEC K88 through the modulation of macrophage phenotype. In vitro experiments have revealed that EVs activate M2 macrophages in a manner that shuts down ERK, thereby inhibiting NLRP3 activation in intestinal epithelial cells. CONCLUSION: Our results reveal that intestinal microbiota drives the onset of diarrheic disease and that probiotic-derived EVs ameliorate diarrheic disease symptoms by modulating macrophage phenotypes. These findings can enhance the advancement of innovative therapeutic approaches for diarrheic conditions based on probiotic-derived EVs.

12.
Food Res Int ; 178: 113946, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309871

ABSTRACT

Chemical hazards in foods, especially naturally occurring food contaminants like mycotoxins, are of serious public health concern. It is important to develop a practical framework to assess and rank health risks of chemical contaminants which can be further utilized by regulatory agencies to prioritize resources for risk assessment and management. In this study, a tiered hazard-prioritization and risk-ranking approach, which included two steps: exposure-based screening and margin of exposure (MOE)-based probabilistic risk ranking; was proposed to efficiently identify and rank chemicals of health concerns. Given the exposure-based hazard prioritization, chemicals with negligible or low health risks were first excluded. The remaining chemicals, imposing a higher health risk, were then ranked to facilitate risk-based decision making. The proposed approach was applied to identify and rank the mycotoxins with substantial health concerns in food commodities randomly sampled in China. A total of 19 mycotoxins were analyzed in 783 food commodities, including infant cookie, noodle, rice flour samples, wheat flour, millet, and rice. Results showed that the mycotoxins in infant foods with the highest health risk were Tenuazonic acid, Deoxynivalenol, and Enniatin B1, but as indicated by the probabilistic MOE estimation, the risks were still in the acceptable range and generally lower than the risks imposed by trace elements (e.g., Arsenic and Cadmium). The health risks of the other 16 mycotoxins were negligible mainly due to their low exposure levels. This study demonstrated that the proposed tiered approach was an efficient and effective tool to quantify and prioritize health risks in support of human health risk management.


Subject(s)
Mycotoxins , Infant , Humans , Mycotoxins/analysis , Flour , Food Contamination/analysis , Triticum , Risk Assessment/methods
13.
Environ Int ; 185: 108525, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38408410

ABSTRACT

Deoxynivalenol (DON) is a common environmental pollutant that poses a serious health risk to humans worldwide. This study was aim to explore whether gut microbiota is involved in DON-induced intestinal toxicity as well as to reveal effect of probiotics derived from gut microbiota in protecting intestinal barrier and to elucidate mechanism. We found that DON caused disturbed gut microbiota, particularly Lactobacillus murinus (L. murinus) deficiency. DON enhanced M1 macrophage polarization and decreased tight junction protein expression. Microbiota transplantation experiments showed that transfer of DON-disrupted microbiota to healthy mice resulted in delivery of DON-induced intestinal toxicity. Besides, DON lost its damaging effect on macrophage and intestinal barrier in antibiotic-treated mice. Further intervention experiments revealed that L. murinus induce macrophage conversion from M1 to M2 phenotype through secreted extracellular vesicles (EVs) to alleviate DON-induced intestinal barrier disruption. Mechanistically, EVs activate TLR2 to promote M2 macrophage polarization and release IL-10, which in turn enhances intestinal barrier function. Upon successful translation of its efficacy into clinical practice, EVs created from L. murinus could be a novel possible treatment strategy for DON-induced gut disease.


Subject(s)
Intestinal Mucosa , Lactobacillus , Trichothecenes , Humans , Animals , Mice , Trichothecenes/toxicity
14.
J Hazard Mater ; 468: 133811, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38382341

ABSTRACT

Chlorine and its derivatives, such as sodium hypochlorite (NaClO) and chlorine dioxide, are frequently employed as disinfectants throughout the pork supply chain in China. Nevertheless, the extensive use of NaClO has the potential to cause the creation of 'chlorine-tolerant bacteria' and accelerate the evolution of antibiotic resistance. This study evaluated the efficacy of NaClO disinfection by examining alterations in the microbiome and resistome of a pork wholesale market (PWM), and bacteria isolation and analysis were performed to validate the findings. As expected, the taxonomic compositions of bacteria was significantly different before and after disinfection. Notably, Salmonella enterica (S. enterica), Salmonella bongori (S. bongori), Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), and Pseudomonas aeruginosa (P. aeruginosa) were observed on all surfaces, indicating that the application of NaClO disinfection treatment in PWM environments for pathogenic bacteria is limited. Correlations were identified between antibiotic resistance genes (ARGs) associated with aminoglycosides (aph(3'')-I, aph(6')-I), quinolone (qnrB, abaQ), polymyxin (arnA, mcr-4) and disinfectant resistance genes (emrA/BD, mdtA/B/C/E/F). Furthermore, correlations were found between risk Rank I ARGs associated with aminoglycoside (aph(3')-I), tetracycline (tetH), beta_lactam (TEM-171), and disinfectant resistance genes (mdtB/C/E/F, emrA, acrB, qacG). Importantly, we found that Acinetobacter and Salmonella were the main hosts of disinfectant resistance genes. The resistance mechanisms of the ARGs identified in PWM were dominated by antibiotic deactivation (38.7%), antibiotic efflux (27.2%), and antibiotic target protection (14.4%). The proportion of genes encoding efflux pumps in the PWM resistome increased after disinfection. Microbial cultures demonstrated that the traits of microbial contamination and antibiotic resistane were consistent with those observed by metagenomic sequencing. This study highlights the possibility of cross-resistance between NaClO disinfectants and antibiotics, which should not be ignored.


Subject(s)
Disinfectants , Pork Meat , Red Meat , Swine , Animals , Anti-Bacterial Agents/pharmacology , Disinfection , Sodium Hypochlorite , Escherichia coli , Chlorine/pharmacology , Disinfectants/pharmacology , Bacteria/genetics , Aminoglycosides , Halogens
15.
Environ Pollut ; 342: 123070, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38056588

ABSTRACT

Sodium hypochlorite (NaClO) and cadmium (Cd) are widely co-occurring in natural aquatic environment; however, no study has been conducted on effects of their combined exposure on aquatic organisms. To assess effects of exposure to NaClO and Cd in zebrafish larvae, we designed six treatment groups, as follows: control group, NaClO group (300 µg/L), 1/100 Cd group (48 µg/L), 1/30 Cd group (160 µg/L), NaClO+1/100 Cd group, and NaClO+1/30 Cd group analyzed behavior, neurological function and cardiac function. Results revealed that exposure to 1/30 Cd and NaClO+1/30 Cd caused abnormal embryonic development in larvae by altering body morphology and physiological indicators. Combined exposure to NaClO and 1/30 Cd affected the free-swimming activity and behavior of larvae in response to light-dark transition stimuli. Moreover, exposure to 1/30 Cd or NaClO+1/30 Cd resulted in a significant increase in tyrosine hydroxylase and acetylcholinesterase activities, as well as significant changes of various neurotransmitters. Lastly, exposure to 1/30 Cd or NaClO+1/30 Cd influenced the transcription of cardiac myosin-related genes and disturbed the myocardial contractile function. Altogether, our results suggested that combined exposure to NaClO and Cd induced oxidative damage in larvae, resulting in detrimental effects on nervous system and cardiac function, thus altering their swimming behavior.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/physiology , Cadmium/toxicity , Sodium Hypochlorite/pharmacology , Larva , Acetylcholinesterase , Neurotransmitter Agents , Water Pollutants, Chemical/toxicity
16.
J Nutr Biochem ; 124: 109527, 2024 02.
Article in English | MEDLINE | ID: mdl-37979711

ABSTRACT

Excessive fructose corn syrup (FCS) intake brings a series of health problems. The aim of the present study was to explore the mechanism of FCS-induced metabolic disorders from the perspective of gut microbiota. Mice were fed for 16 weeks with normal or 30% FCS drinking water. Compared to the control group, FCS caused significantly higher fat deposition, hepatic steatosis, liver and intestinal inflammatory damages (P<.05). FCS increased the abundance of Muribaculaceae in vivo and in vitro, which was positively correlated with the indices of metabolic disorders (P<.05). In vivo and in vitro data indicated that FCS enhanced the microbial function involved in pentose phosphate pathway and arachidonic acid metabolism, metabolomics further demonstrated that FCS led to an increase in prostaglandins (the catabolites of arachidonic acid) (P<.05). Our study confirmed that FCS can directly promote gut microbiota to synthesize inflammatory factor prostaglandins, which provides new insights and directions for the treatment of FCS-induced metabolic disorders and inflammation.


Subject(s)
Gastrointestinal Microbiome , Metabolic Diseases , Mice , Animals , Arachidonic Acid/adverse effects , Zea mays , Fructose/adverse effects , Obesity/metabolism , Dietary Fats/pharmacology , Prostaglandins , Mice, Inbred C57BL , Diet, High-Fat
17.
Mol Biotechnol ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38123749

ABSTRACT

The shared mechanisms between pediatric acute lymphoblastic leukaemia (ALL) and pediatric sepsis are currently unclear. This study was aimed to explore the shared key genes of pediatric ALL and pediatric sepsis. The datasets involved were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between disease and control samples in GSE13904 and GSE79533 were intersected. The least absolute shrinkage and selection operator (LASSO) and the boruta analyses were performed in GSE13904 and GSE79533 separately based on shared DEGs, and shared key genes were obtained by taking the intersection of sepsis-related key genes and ALL-related key genes. Three shared key genes (HCK, NOG, RNF125) were obtained, that have a good diagnostic value for both sepsis and ALL. The correlation between shared key genes and differentially expressed immune cells was higher in GSE13904 and conversely, the correlation of which was lower in GSE79533. Suggesting that the sharing key genes had a different impact on the immune environment in pediatric ALL and pediatric sepsis. We make the case that this study provides a new perspective to study the relationship between pediatric ALL and pediatric sepsis.

18.
Anim Microbiome ; 5(1): 55, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37941060

ABSTRACT

BACKGROUND: The dissemination of antibiotic resistance genes (ARGs) poses a substantial threat to environmental safety and human health. Herein, we present a longitudinal paired study across the swine lifetime from birth to market, coupled with metagenomic sequencing to explore the dynamics of ARGs and their health risk in the swine fecal microbiome. RESULTS: We systematically characterized the composition and distribution of ARGs among the different growth stages. In total, 829 ARG subtypes belonging to 21 different ARG types were detected, in which tetracycline, aminoglycoside, and MLS were the most abundant types. Indeed, 134 core ARG subtypes were shared in all stages and displayed a growth stage-associated pattern. Furthermore, the correlation between ARGs, gut microbiota and mobile genetic elements (MGEs) revealed Escherichia coli represented the main carrier of ARGs. We also found that in most cases, the dominant ARGs could be transmitted to progeny piglets, suggesting the potential ARGs generation transmission. Finally, the evaluation of the antibiotic resistance threats provides us some early warning of those high health risk ARGs. CONCLUSIONS: Collectively, this relatively more comprehensive study provides a primary overview of ARG profile in swine microbiome across the lifetime and highlights the health risk and the intergenerational spread of ARGs in pig farm.

19.
Anim Microbiome ; 5(1): 49, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817260

ABSTRACT

BACKGROUND: Pet cats frequently have diarrhea in their daily life. Bacillus has a protective role that has crucial beneficial functions on intestinal homeostasis. The aim of this research was to investigate the effects of the compound Bacillus on the prevention of diarrhea, microbiota and metabolism in pet cats. A total of 20 pet cats (1-2 years old, 3.91 ± 0.92 kg) were randomly divided into two groups and fed with a basal diet (Control group), or a basal diet supplemented with 3 × 109 CFU/kg compound Bacillus (Probiotics group). The experiment lasted 33 days. RESULTS: Results showed that the compound Bacillus significantly reduced the rate of soft stools and diarrhea in pet cats compared with the control group (P < 0.05, n = 10). Meanwhile, compared with the control group, the probiotics group significantly decreased the content of IL-1ß and IL-6 and significantly increased IL-10 (P < 0.05, n = 6) in the serum. In addition, feeding probiotics significantly increased the abundance of p_Patescibacter and g_Plectosphaerella, decreased the abundance of p_Firmicutes, p_Gemmatimonadetes, g_Ruminococcaceae_UCG-005, g_Ascochytahe and g_Saccharomyces in the feces of the pet cats (P < 0.05, n = 6). And it also can significantly increase the content of total SCFAs, acetic acid and butyric acid in the feces (P < 0.05, n = 6). The fecal and serum metabolomics analyses revealed that most fecal and serum compounds were involved in metabolism, particularly in chemical structure transformation maps and amino acid metabolism. Also, eugenitol and methyl sulfate were the most significantly increased serum metabolites, and log2FC were 38.73 and 37.12, respectively. Pearson's correlation analysis showed that changes in serum metabolism and fecal microbiota were closely related to immune factors. There was also a strong correlation between serum metabolites and microbiota composition. CONCLUSIONS: The results of this research highlight the potential of the compound Bacillus as a dietary supplement to alleviate diarrhea in pet cats.

20.
Ann Med ; 55(2): 2261477, 2023.
Article in English | MEDLINE | ID: mdl-37774039

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic inflammation of the gastrointestinal tract that co-occurs with gut microbiota dysbiosis; however, its etiology remains unclear. MicroRNA (miRNA)-microbiome interactions play an essential role in host health and disease. METHODS: To investigate the gut microbiome and host miRNA profiles in colitis, we used a Dextran Sulfate Sodium (DSS)-induced ulcerative colitis (UC) model. Metagenomic sequencing and metabolome profiling were performed to explore typical microbiota and metabolite signatures in colitis, whereas mRNA and miRNA sequencing were used to determine differentially expressed miRNAs and their target genes in the inflamed colon. RESULTS: A total of 986 miRNAs were identified between the two groups, with 41 upregulated and 21 downregulated miRNAs in colitis mice compared to the control group. Notably, the target genes of these significantly altered miRNAs were primarily enriched in the immune and inflammation-related pathways. Second, LEfSe analysis revealed bacterial biomarkers distinguishing the two groups, with significantly higher levels of commonly encountered pathogens such as Escherichia coli and Shigella flexneri in the UC group, whereas beneficial species such as Bifidobacterium pseudolongum were more abundant in the control group. Microbiota metabolites histamine, N-acetylhistamine, and glycocholic acid were found to be downregulated in colitis mice. Spearman correlation further revealed the potential crosstalk between the microbiota profile and colonic miRNA, revealing the possibility of microbiome-miRNA interactions involved in IBD development. CONCLUSIONS: Our data reveal the relationships between multi-omic features during UC and suggest that targeting specific miRNAs may provide new avenues for the development of effective miRNA-based therapeutics.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , MicroRNAs , Humans , Animals , Mice , Colitis, Ulcerative/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Multiomics , Colitis/chemically induced , Colitis/genetics , Inflammation , Mice, Inbred C57BL , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL