Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 11: 1328077, 2024.
Article in English | MEDLINE | ID: mdl-38410188

ABSTRACT

Background: The mitotic kinesin, KIF18A, is required for proliferation of cancer cells that exhibit chromosome instability (CIN), implicating it as a promising target for treatment of a subset of aggressive tumor types. Determining regions of the KIF18A protein to target for inhibition will be important for the design and optimization of effective small molecule inhibitors. Methods: In this study, we used cultured cell models to investigate the effects of mutating S284 within the alpha-4 helix of KIF18A, which was previously identified as a phosphorylated residue. Results: Mutations in S284 cause relocalization of KIF18A from the plus-ends of spindle microtubules to the spindle poles. Furthermore, KIF18A S284 mutants display loss of KIF18A function and fail to support proliferation in CIN tumor cells. Interestingly, similar effects on KIF18A localization and function were seen after treatment of CIN cells with KIF18A inhibitory compounds that are predicted to interact with residues within the alpha-4 helix. Conclusion: These data implicate the KIF18A alpha-4 helix as an effective target for inhibition and demonstrate that small molecules targeting KIF18A selectively limit CIN tumor cell proliferation and result in phenotypically similar effects on mitosis at the single cell level compared to genetic perturbations.

2.
bioRxiv ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37905069

ABSTRACT

The mitotic kinesin, KIF18A, is required for proliferation of cancer cells that exhibit chromosome instability (CIN), implicating it as a promising target for treatment of a subset of aggressive tumor types. Determining regions of the KIF18A protein to target for inhibition will be important for the design and optimization of effective small molecule inhibitors. In this study, we investigated the effects of mutating S284 within the alpha-4 helix of KIF18A, which was previously identified as a phosphorylated residue. Mutations in S284 cause relocalization of KIF18A from the plus-ends of spindle microtubules to the spindle poles. Furthermore, KIF18A S284 mutants display loss of KIF18A function and fail to support proliferation in CIN tumor cells. Interestingly, similar effects on KIF18A localization and function were seen after treatment of CIN cells with KIF18A inhibitory compounds that are predicted to interact with residues within the alpha-4 helix. These data implicate the KIF18A alpha-4 helix as an effective target for inhibition and demonstrate that small molecules targeting KIF18A selectively limit CIN tumor cell proliferation and result in phenotypically similar effects on mitosis at the single cell level compared to genetic perturbations.

3.
J Med Chem ; 57(3): 1033-45, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24432870

ABSTRACT

Structure-based methods were used to design a potent and highly selective group II p21-activated kinase (PAK) inhibitor with a novel binding mode, compound 17. Hydrophobic interactions within a lipophilic pocket past the methionine gatekeeper of group II PAKs approached by these type I 1/2 binders were found to be important for improving potency. A structure-based hypothesis and strategy for achieving selectivity over group I PAKs, and the broad kinome, based on unique flexibility of this lipophilic pocket, is presented. A concentration-dependent decrease in tumor cell migration and invasion in two triple-negative breast cancer cell lines was observed with compound 17.


Subject(s)
Alkynes/chemical synthesis , Antineoplastic Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Pyrimidines/chemical synthesis , p21-Activated Kinases/antagonists & inhibitors , Alkynes/chemistry , Alkynes/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Binding Sites , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Pyrimidines/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship , Triple Negative Breast Neoplasms , p21-Activated Kinases/chemistry
5.
Eur J Med Chem ; 67: 175-87, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23867602

ABSTRACT

A therapeutic rationale is proposed for the treatment of inflammatory diseases, such as psoriasis and inflammatory bowel diseases (IBD), by selective targeting of TYK2. Hit triage, following a high-throughput screen for TYK2 inhibitors, revealed pyridine 1 as a promising starting point for lead identification. Initial expansion of 3 separate regions of the molecule led to eventual identification of cyclopropyl amide 46, a potent lead analog with good kinase selectivity, physicochemical properties, and pharmacokinetic profile. Analysis of the binding modes of the series in TYK2 and JAK2 crystal structures revealed key interactions leading to good TYK2 potency and design options for future optimization of selectivity.


Subject(s)
Protein Kinase Inhibitors/pharmacology , TYK2 Kinase/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , TYK2 Kinase/metabolism
6.
J Med Chem ; 56(11): 4521-36, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23668484

ABSTRACT

Herein we report our lead optimization effort to identify potent, selective, and orally bioavailable TYK2 inhibitors, starting with lead molecule 3. We used structure-based design to discover 2,6-dichloro-4-cyanophenyl and (1R,2R)-2-fluorocyclopropylamide modifications, each of which exhibited improved TYK2 potency and JAK1 and JAK2 selectivity relative to 3. Further optimization eventually led to compound 37 that showed good TYK2 enzyme and interleukin-12 (IL-12) cell potency, as well as acceptable cellular JAK1 and JAK2 selectivity and excellent oral exposure in mice. When tested in a mouse IL-12 PK/PD model, compound 37 showed statistically significant knockdown of cytokine interferon-γ (IFNγ), suggesting that selective inhibition of TYK2 kinase activity might be sufficient to block the IL-12 pathway in vivo.


Subject(s)
4-Aminopyridine/analogs & derivatives , 4-Aminopyridine/chemical synthesis , Aminopyridines/chemical synthesis , Benzamides/chemical synthesis , TYK2 Kinase/antagonists & inhibitors , 4-Aminopyridine/pharmacokinetics , 4-Aminopyridine/pharmacology , Administration, Oral , Aminopyridines/pharmacokinetics , Aminopyridines/pharmacology , Animals , Benzamides/pharmacokinetics , Benzamides/pharmacology , Biological Availability , Crystallography, X-Ray , Interferon-gamma/antagonists & inhibitors , Interferon-gamma/biosynthesis , Interleukin-12/metabolism , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 3/antagonists & inhibitors , Mice , Microsomes, Liver/metabolism , Models, Molecular , Protein Binding , Rats , STAT4 Transcription Factor/antagonists & inhibitors , Stereoisomerism , Structure-Activity Relationship
7.
J Med Chem ; 56(11): 4764-85, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23659214

ABSTRACT

Herein we report on the structure-based discovery of a C-2 hydroxyethyl moiety which provided consistently high levels of selectivity for JAK1 over JAK2 to the imidazopyrrolopyridine series of JAK1 inhibitors. X-ray structures of a C-2 hydroxyethyl analogue in complex with both JAK1 and JAK2 revealed differential ligand/protein interactions between the two isoforms and offered an explanation for the observed selectivity. Analysis of historical data from related molecules was used to develop a set of physicochemical compound design parameters to impart desirable properties such as acceptable membrane permeability, potent whole blood activity, and a high degree of metabolic stability. This work culminated in the identification of a highly JAK1 selective compound (31) exhibiting favorable oral bioavailability across a range of preclinical species and robust efficacy in a rat CIA model.


Subject(s)
Antirheumatic Agents/chemical synthesis , Heterocyclic Compounds, 3-Ring/chemical synthesis , Imidazoles/chemical synthesis , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 2/antagonists & inhibitors , Pyridines/chemical synthesis , Pyrroles/chemical synthesis , Administration, Oral , Animals , Antirheumatic Agents/chemistry , Antirheumatic Agents/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/etiology , Biological Availability , Cell Membrane Permeability , Collagen , Crystallography, X-Ray , Dogs , Haplorhini , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Janus Kinase 1/chemistry , Janus Kinase 2/chemistry , Madin Darby Canine Kidney Cells , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Pyridines/chemistry , Pyridines/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Rats , Stereoisomerism
8.
J Med Chem ; 55(13): 6176-93, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-22698084

ABSTRACT

Herein we report the discovery of the C-2 methyl substituted imidazopyrrolopyridine series and its optimization to provide potent and orally bioavailable JAK1 inhibitors with selectivity over JAK2. The C-2 methyl substituted inhibitor 4 exhibited not only improved JAK1 potency relative to unsubstituted compound 3 but also notable JAK1 vs JAK2 selectivity (20-fold and >33-fold in biochemical and cell-based assays, respectively). Features of the X-ray structures of 4 in complex with both JAK1 and JAK2 are delineated. Efforts to improve the in vitro and in vivo ADME properties of 4 while maintaining JAK1 selectivity are described, culminating in the discovery of a highly optimized and balanced inhibitor (20). Details of the biological characterization of 20 are disclosed including JAK1 vs JAK2 selectivity levels, preclinical in vivo PK profiles, performance in an in vivo JAK1-mediated PK/PD model, and attributes of an X-ray structure in complex with JAK1.


Subject(s)
Heterocyclic Compounds, 3-Ring/administration & dosage , Heterocyclic Compounds, 3-Ring/chemistry , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 2/antagonists & inhibitors , Animals , Biological Assay , Biological Availability , Cell Line , Crystallography, X-Ray , Dogs , Hepatocytes/cytology , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Humans , Janus Kinase 1/chemistry , Janus Kinase 2/chemistry , Mice , Models, Molecular , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...