Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Oncol ; 25(7): e297-e307, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38936388

ABSTRACT

Extranodal extension of tumour on histopathology is known to be a negative prognostic factor in head and neck cancer. Compelling evidence suggests that extranodal extension detected on radiological imaging is also a negative prognostic factor. Furthermore, if imaging detected extranodal extension could be identified reliably before the start of treatment, it could be used to guide treatment selection, as patients might be better managed with non-surgical approaches to avoid the toxicity and cost of trimodality therapy (surgery, chemotherapy, and radiotherapy together). There are many aspects of imaging detected extranodal extension that remain unresolved or are without consensus, such as the criteria to best diagnose them and the associated terminology. The Head and Neck Cancer International Group conducted a five-round modified Delphi process with a group of 18 international radiology experts, representing 14 national clinical research groups. We generated consensus recommendations on the terminology and diagnostic criteria for imaging detected extranodal extension to harmonise clinical practice and research. These recommendations have been endorsed by 19 national and international organisations, representing 34 countries. We propose a new classification system to aid diagnosis, which was supported by most of the participating experts over existing systems, and which will require validation in the future. Additionally, we have created an online educational resource for grading imaging detected extranodal extensions.


Subject(s)
Consensus , Extranodal Extension , Head and Neck Neoplasms , Humans , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/therapy , Extranodal Extension/diagnostic imaging , Extranodal Extension/pathology , Delphi Technique , Terminology as Topic , Prognosis
2.
Curr Med Imaging ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38712376

ABSTRACT

BACKGROUND: Transorbital Ultrasonography (TOS) is a promising imaging technology that can be used to characterize the structures of the optic nerve and the potential alterations that may occur in those structures as a result of an increase in intracranial pressure (ICP) or the presence of other disorders such as multiple sclerosis (MS) and hydrocephalus. OBJECTIVE: In this paper, the primary objective is to develop a fully automated system that is capable of segmenting and calculating the diameters of structures that are associated with the optic nerve in TOS images. These structures include the optic nerve diameter sheath (ONSD) and the optic nerve diameter (OND). METHODS: A fully convolutional neural network (FCN) model that has been pre-trained serves as the foundation for the segmentation method. The method that was developed was utilized to collect 464 different photographs from 110 different people, and it was accomplished with the assistance of four distinct pieces of apparatus. RESULTS: An examination was carried out to compare the outcomes of the automatic measurements with those of a manual operator. Both OND and ONSD have a typical inaccuracy of -0.12 0.32 mm and 0.14 0.58 mm, respectively, when compared to the operator. The Pearson correlation coefficient (PCC) for OND is 0.71, while the coefficient for ONSD is 0.64, showing that there is a positive link between the two measuring tools. CONCLUSION: A conclusion may be drawn that the technique that was developed is automatic, and the average error (AE) that was reached for the ONSD measurement is compatible with the ranges of inter-operator variability that have been discovered in the literature.

3.
Plant Physiol Biochem ; 206: 108269, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38096732

ABSTRACT

Dark pericarp disease (DPD), a physiological disorder induced by excess Manganese (Mn) in litchi, severely impacts the appearance and its economic value. To elucidate the underlying mechanisms of DPD, this study investigated the variations of phenolic compound, antioxidant defense system, subcellular structure, and transcriptome profiles in both normal fruit and dark pericarp fruit (DPF) at three developmental stages (green, turning, and maturity) of 'Guiwei' litchi. The results reveal that excess Mn in DPF pericarp resulted in a significant increase in reactive oxygen species, especially H2O2, and subsequent alterations in antioxidant enzyme activities. Notably, SOD (EC 1.15.1.1) activity at the green stage, along with POD (EC 1.11.1.7) and APX (EC 1.11.1.11) activities at the turning and the maturity stages, and GST (EC 2.5.1.18) activity during fruit development, were markedly higher in DPF. Cell injury was observed in pericarp, facilitating the formation of dark materials in DPF. Transcriptome profiling further reveals that genes involved in flavonoid and anthocyanin synthesis were up-regulated during the green stage but down-regulated during the turning and maturity stages. In contrast, PAL (EC 4.3.1.24), C4H (EC 1.14.14.91), 4CL (EC 6.2.1.12), CAD (EC 1.1.1.195), and particularly POD, were up-regulated, leading to reduced flavonoid and anthocyanin accumulation and increased lignin content in DPF pericarp. The above suggests that the antioxidant system and phenolic metabolism jointly resisted the oxidative stress induced by Mn stress. We speculate that phenols, terpenes, or their complexes might be the substrates of the dark substances in DPF pericarp, but more investigations are needed to identify them.


Subject(s)
Antioxidants , Litchi , Antioxidants/metabolism , Litchi/genetics , Litchi/chemistry , Litchi/metabolism , Manganese/metabolism , Anthocyanins/metabolism , Fruit/metabolism , Flavonoids/metabolism
4.
Micromachines (Basel) ; 15(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38258195

ABSTRACT

An ultra-narrow precision slit with a width of less than ten micrometers is the key structure of some optical components, but the fabrication of these structures is still very difficult to accomplish. To fabricate these slits, this paper proposed a periodically reducing current over-growth electroforming process. In the periodically reducing current over-growth electroforming, the electric current applied to the electrodeposition process is periodically stepped down rather than being constant. Simulations and experimentation studies were carried out to verify the feasibility of the proposed process, and further optimization of process parameters was implemented experimentally to achieve the desired ultra-narrow precision slits. The current values were: I1=Iinitial, I2=0.75Iinitial at Qc=0.5Qt, I3=0.5Iinitial at Qc=0.75Qt,respectively. It was shown that, compared with conventional constant current over-growth electroforming, the proposed process can significantly improve the surface quality and geometrical accuracy of the fabricated slits and can markedly enhance the achievement of the formed ultra-narrow slits. With the proposed process, slits with a width of down to 5 ± 0.1 µm and a surface roughness of less than 62.8 nm can be easily achieved. This can improve the determination sensitivity and linear range of the calibration curves of spectral imagers and food and chemical analysis instruments. Periodically reducing current over-growth electroforming is effective and advantageous in fabricating ultra-narrow precision slits.

SELECTION OF CITATIONS
SEARCH DETAIL