Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.620
Filter
1.
BMC Biol ; 22(1): 171, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135168

ABSTRACT

BACKGROUND: Free fatty acids (FFAs) play vital roles as energy sources and substrates in organisms; however, the molecular mechanism regulating the homeostasis of FFA levels in various circumstances, such as feeding and nonfeeding stages, is not fully clarified. Holometabolous insects digest dietary triglycerides (TAGs) during larval feeding stages and degrade stored TAGs in the fat body during metamorphosis after feeding cessation, which presents a suitable model for this study. RESULTS: This study reported that two lipases are differentially regulated by hormones to maintain the homeostasis of FFA levels during the feeding and nonfeeding stages using the lepidopteran insect cotton bollworm Helicoverpa armigera as a model. Lipase member H-A-like (Lha-like), related to human pancreatic lipase (PTL), was abundantly expressed in the midgut during the feeding stage, while the monoacylglycerol lipase ABHD12-like (Abhd12-like), related to human monoacylglycerol lipase (MGL), was abundantly expressed in the fat body during the nonfeeding stage. Lha-like was upregulated by juvenile hormone (JH) via the JH intracellular receptor methoprene-tolerant 1 (MET1), and Abhd12-like was upregulated by 20-hydroxyecdysone (20E) via forkhead box O (FOXO) transcription factor. Knockdown of Lha-like decreased FFA levels in the hemolymph and reduced TAG levels in the fat body. Moreover, lipid droplets (LDs) were small, the brain morphology was abnormal, the size of the brain was small, and the larvae showed the phenotype of delayed pupation, small pupae, and delayed tissue remodeling. Knockdown of Abhd12-like decreased FFA levels in the hemolymph; however, TAG levels increased in the fat body, and LDs remained large. The development of the brain was arrested at the larval stage, and the larvae showed a delayed pupation phenotype and delayed tissue remodeling. CONCLUSIONS: The differential regulation of lipases expression by different hormones determines FFAs homeostasis and different TAG levels in the fat body during the feeding larval growth and nonfeeding stages of metamorphosis in the insect. The homeostasis of FFAs supports insect growth, brain development, and metamorphosis.


Subject(s)
Brain , Fatty Acids, Nonesterified , Homeostasis , Animals , Brain/metabolism , Brain/growth & development , Fatty Acids, Nonesterified/metabolism , Lipase/metabolism , Lipase/genetics , Moths/growth & development , Moths/physiology , Moths/metabolism , Larva/growth & development , Larva/metabolism , Juvenile Hormones/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Metamorphosis, Biological/physiology , Ecdysterone/metabolism
2.
Phytochemistry ; 227: 114227, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39067628

ABSTRACT

Phytochemical studies on the leaves and twigs of Garcinia oligantha Merr. led to the isolation of twelve previously undescribed depsidone derivatives (oliganthdepsidones A-L, 1-12). Their structures were elucidated by extensive spectroscopic analysis including 1H and 13C NMR, HSQC, HMBC and NOESY along with HRESIMS. The structures of oliganthdepsidones G and J were finally determined using DFT-NMR chemical shift calculations and DP4+ methods. Cytotoxicity test in four human cancer cell lines indicated that oliganthdepsidone F had relatively strong cytotoxic effect against A375 (melanoma), A549 (lung cancer), HepG2 (liver cancer), and MCF-7 (breast cancer) cell lines with IC50 of 18.71, 15.44, 10.92, and 15.90 µM, respectively. The dose- and time-dependent antiproliferative effects of oliganthdepsidone F on these cell lines were also observed by CCK-8 test. As determined by fluorescent microscopy and flow cytometry in these cell lines, oliganthdepsidone F could promote cell apoptosis, leading to the inhibition of cell proliferation. The results of wound healing assay and transwell assay showed that oliganthdepsidone F could inhibit the migration and invasion of A549 and MCF-7 cell lines in a concentration-dependent manner.

3.
Sci Rep ; 14(1): 16428, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39013961

ABSTRACT

Studies investigating the relationship between dietary vitamin B1 intake and risk of Hyperuricemia (HU) are scarce, the present study aimed to examine the association of dietary vitamin B1 intake and HU among adults. This cross-sectional study included 5750 adults whose data derived from National Health and Nutrition Examination Survey (NHANES) from March 2017 to March 2020. The dietary intake of vitamin B1 was assessed using 24-h dietary recall interviews. The characteristics of study participants were grouped into five levels according to the levels of vitamin B1 quintile. Multivariate logistic regression analysis was used to estimate the odds ratio (OR) and 95% confidence interval (CI) of HU, according to the vitamin B1 intake quintile for male and female separately. The dose-response relationship was determined by the restricted cubic spline (RCS). Smoothed curve fitting was used to assess serum uric acid concentration versus dietary vitamin B1 intake in the study population. The prevalence of hyperuricemia was 18.90% (20.15% and 17.79% for males and females, respectively) in the United States from March 2017 to March 2020. Multiple logistic regression analyses showed that in the male population, the HU ratio (OR) of vitamin B1 intake in Q2 to Q5 compared with the lowest quintile (Q1) was 0.75 (95% CI 0.52, 1.09), 0.70 (95% CI 0.48, 1.02), 0.66 (95% CI 0.44, 0.99) and 0.55 (95% CI 0.34, 0.90). The P for trend was 0.028. In women, the ORs for vitamin B1 intake Q2 to Q5 were 0.87 (95% CI 0.64, 1.19), 0.97 (0.68-1.38), 1.05 (0.69-1.60) and 0.75 (0.42-1.34), respectively. The P for trend was 0.876. The RCS curve revealed a linear relationship between vitamin B1 intake and the risk of hyperuricemia in men (P nonlinear = 0.401). Smoothed curve fitting demonstrated a negative association between vitamin B1 intake and serum uric acid concentration in men, whereas there was no significant association between dietary vitamin B1 intake and the risk of hyperuricemia in women. In the US adult population, dietary vitamin B1 intake was negatively associated with hyperuricemia in males.


Subject(s)
Hyperuricemia , Nutrition Surveys , Thiamine , Uric Acid , Humans , Hyperuricemia/epidemiology , Hyperuricemia/blood , Hyperuricemia/etiology , Male , Female , Middle Aged , Adult , Cross-Sectional Studies , Uric Acid/blood , Thiamine/administration & dosage , Thiamine/blood , Prevalence , Diet , Odds Ratio , Risk Factors , Aged , United States/epidemiology
4.
J Chromatogr A ; 1730: 465150, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38991603

ABSTRACT

The precise determination of polypeptide antibiotics (PPTs) in foods has been always challenging because of the interference of various endogenous peptides in complex matrix. Herin, a novel large-pore covalent organic framework (TABPT-SPDA-COF) with accessible pore size of 7.9 nm was synthesized as a solid phase extraction (SPE) absorbent for efficiently enriching four PPTs existed in foods originating from animals. The parameters of SPE process were systematically optimized. Subsequently, four PPTs were determined by UHPLC-MS/MS. Under the optimal conditions, TABPT-SPDA-COF shows outstanding enrichment capacity for PPTs in contrast to commercial absorbents ascribed to size selectivity and multiple interaction effects. The method exhibits excellent linear range (0.005-100 ng mL-1), satisfactory limits of detection (0.1 pg mL-1) as well as relative recoveries (86.2-116 %). This work offers a practicable platform to monitor trace PPTs from complex animal-derived foodstuffs.


Subject(s)
Anti-Bacterial Agents , Limit of Detection , Metal-Organic Frameworks , Peptides , Solid Phase Extraction , Tandem Mass Spectrometry , Solid Phase Extraction/methods , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Animals , Metal-Organic Frameworks/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Peptides/analysis , Peptides/isolation & purification , Peptides/chemistry , Food Contamination/analysis
5.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39065694

ABSTRACT

Orally administered crocin rapidly and efficiently rescues depressive-like behaviors in depression models; however, crocin levels in the circulatory and central nervous systems are rather low. The underlying mechanism responsible for the inconsistency between pharmacokinetics and pharmacodynamics is unknown. To identify the active metabolites and clarify the underlying mechanisms, the pharmacokinetics and metabolic effects of the gut flora and hepatic and intestinal microsomes on crocin were examined, and the pharmacodynamics of crocin and its major metabolite, crocetin, were also evaluated in both normal and pseudo germ-free mice subjected to chronic social defeat stress. The results showed that oral administration of 300 mg/kg crocin significantly improved the depression-like behaviors of chronic social defeat stress mice, although the levels of crocin in the circulatory system were rather low (Cmax = 43.5 ± 8.6 µg/L; AUC = 151 ± 20.8 µg·h/L). However, the primary metabolite of crocetin was much more abundant in vivo (Cmax = 4662.5 ± 586.1 µg/L; AUC = 33,451.9 ± 3323.6 µg·h/L). Orally administered crocin was primarily metabolized into crocetin by the gut flora instead of hepatic or intestinal microsomal enzymes, and less than 10% of crocin was transformed into crocetin in the liver or intestinal microsomes. Inhibition of the gut flora dramatically reduced the production of and in vivo exposure to crocetin, and the rapid antidepressant effect of crocin disappeared. Moreover, crocetin showed rapid antidepressant effects similar to those of crocin, and the effects were independent of the gut flora. In conclusion, the metabolic transformation of crocin to crocetin primarily contributes to the rapid antidepressant effects of crocin and is dependent on the gut flora.

6.
ACS Biomater Sci Eng ; 10(8): 4839-4854, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39079050

ABSTRACT

Intervertebral disc degeneration (IVDD) is a prevalent chronic condition causing spinal pain and functional impairment. This study investigates the role of extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (hUCMSCs) in regulating IVDD. Using RNA-seq, we analyzed differential expressions of lncRNA and miRNA in nucleus pulposus tissues from various mouse groups. We identified key regulatory molecules, MALAT1 and miRNA-138-5p, which contribute to IVDD. Further experiments demonstrated that MALAT1 can up-regulate SLC7A11 expression by competitively binding to miR-138-5p, forming a MALAT1/miR-138-5p/SLC7A11 coexpression regulatory network. This study elucidates the molecular mechanism by which hUCMSC-derived EVs regulate IVDD and could help develop novel therapeutic strategies for treating this condition. Our findings demonstrate that hUCMSCs-EVs inhibit ferroptosis in nucleus pulposus cells, thereby improving IVDD. These results highlight the therapeutic potential of hUCMSCs-EVs in ameliorating the development of IVDD, offering significant scientific and clinical implications for new treatments.


Subject(s)
Extracellular Vesicles , Intervertebral Disc Degeneration , Mesenchymal Stem Cells , MicroRNAs , RNA, Long Noncoding , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Humans , Mesenchymal Stem Cells/metabolism , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Mice , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Umbilical Cord/cytology , Umbilical Cord/metabolism , Male , Mice, Inbred C57BL , Gene Expression Regulation , Ferroptosis/genetics
7.
Front Pharmacol ; 15: 1365639, 2024.
Article in English | MEDLINE | ID: mdl-39021837

ABSTRACT

Sepsis is a complex syndrome characterized by multi-organ dysfunction, due to the presence of harmful microorganisms in blood which could cause mortality. Complications associated with sepsis involve multiple organ dysfunction. The pathogenesis of sepsis remains intricate, with limited treatment options and high mortality rates. Traditional Chinese medicine (TCM) has consistently demonstrated to have a potential on various disease management. Its complements include reduction of oxidative stress, inhibiting inflammatory pathways, regulating immune responses, and improving microcirculation. Traditional Chinese medicine can mitigate or even treat sepsis in a human system. This review examines progress on the use of TCM extracts for treating sepsis through different pharmacological action and its mechanisms. The potential targets of TCM extracts and active ingredients for the treatment of sepsis and its complications have been elucidated through molecular biology research, network pharmacology prediction, molecular docking analysis, and visualization analysis. Our aim is to provide a theoretical basis and empirical support for utilizing TCM in the treatment of sepsis and its complications while also serving as a reference for future research and development of sepsis drugs.

9.
Neurosci Res ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025266

ABSTRACT

Our previous studies have reported that hydrogen sulfide (H2S) has ability to improve diabetes-associated cognitive dysfunction (DACD), but the exact mechanisms remain unknown. Recent research reveals that Warburg effect is associated with synaptic plasticity which plays a key role in cognition promotion. Herein, the present study was aimed to demonstrate whether hippocampal Warburg effect contributes to H2S-ameliorated DACD and further explore its potential mechanism. We found that H2S promoted the hippocampal Warburg effect and inhibited the OxPhos in the hippocampus of STZ-induced diabetic rats. It also improved the hippocampal synaptic plasticity in STZ-induced diabetic rats, as evidenced by the change of microstructures and the expression of different key-enzymes. Furthermore, inhibited hippocampal Warburg effect induced by DCA markedly abolished the improvement of H2S on synaptic plasticity in the hippocampus of STZ-induced diabetic rats. DCA blocked H2S-attenuated the cognitive dysfunction in STZ-induced diabetic rats, according to the Y-maze, Novel Objective Recognition, and Morris Water Maze tests. Collectively, these findings indicated that the hippocampal Warburg effect mediates H2S-ameliorated DACD by improving hippocampal synaptic plasticity.

10.
Int J Ophthalmol ; 17(7): 1307-1312, 2024.
Article in English | MEDLINE | ID: mdl-39026900

ABSTRACT

AIM: To observe the effects of femtosecond laser-assisted excimer laser in situ keratomileusis combined with accelerated corneal cross-linking (FS-LASIK Xtra) on corneal densitometry after correcting for high myopia. METHODS: In this prospectively study, 130 patients underwent FS-LASIK or FS-LASIK Xtra for high myopia. Their right eyes were selected for inclusion in the study, of which 65 cases of 65 eyes in the FS-LASIK group, 65 patients with 65 eyes in the FS-LASIK Xtra group. Patients were evaluated for corneal densitometry at 1, 3, and 6mo postoperatively using Pentacam Scheimpflug imaging. RESULTS: Preoperative differences in corneal densitometry between the FS-LASIK and FS-LASIK Xtra groups in different ranges were not statistically significant (P>0.05). Layer-by-layer analysis revealed statistically significant differences in the anterior (120 µm), central, and total layer corneal densitometry between the FS-LASIK and FS-LASIK Xtra groups at 1 and 3mo postoperatively (all P<0.05), the FS-LASIK Xtra group is higher than that of the FS-LASIK group. Analysis of different diameter ranges showed statistically significant differences between the FS-LASIK group and the FS-LASIK Xtra group at 1mo postoperatively in the ranges of 0-2, 2-6, and 6-10 mm (both P<0.05); At 3mo postoperatively, the FS-LASIK Xtra group is higher than that of the FS-LASIK group in the ranges of 0-2 and 2-6 mm (P<0.05). At 6mo postoperatively, there were no statistically significant differences in corneal densitometry between the FS-LASIK group and the FS-LASIK Xtra group in different diameter ranges (all P>0.05). CONCLUSION: There is an increase in internal corneal densitometry during the early postoperative period after FS-LASIK Xtra for correction of high myopia. However, the densitometry values decreased to the level of conventional FS-LASIK at 6mo after surgery, with the most significant changes observed in the superficial central zone.

12.
J Physiol Investig ; 67(3): 107-117, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38857204

ABSTRACT

Diabetic retinopathy (DR) is a secondary complication of diabetes that can lead to visual impairment and blindness. The retinal pigment epithelium (RPE) is a monolayer of pigment cells that forms the blood-retinal barrier (BRB) via tight junction (TJ) proteins and plays a crucial role in the physiological function of the retina. Hyperglycemia induces RPE death and BRB breakdown, which accelerates the process of DR. Curcumin, an active extract of Curcuma longa , has anti-inflammatory, antioxidant, antiapoptotic, and neuroprotective properties. However, the effect of Curcumin on the BRB under high glucose conditions remains unknown. This study aimed to investigate the protective effects of Curcumin on RPE physiology in vitro and in vivo . Curcumin significantly alleviated cell viability inhibition under high glucose conditions. Moreover, high glucose reduced extracellular signal-regulated kinase and Akt pathways activation to diminish RPE cell growth but reversed by Curcumin treatment. Curcumin protected not only TJ integrity but also retinoid regeneration through TJ proteins and isomerase modulation in diabetic retina. Furthermore, Curcumin decreased the expression of angiogenic factor to inhibit retinal neovascularization. Finally, Curcumin treatment markedly reduced apoptosis during hyperglycemia. In conclusion, Curcumin can alleviate the progression of DR by promoting RPE survival, TJ integrity, retinoid isomerase activity, RPE senescence inhibition, and neovascularization. Therefore, Curcumin exhibits high potential for use as a therapeutic agent for early DR.


Subject(s)
Cellular Senescence , Curcumin , Diabetic Retinopathy , Retinal Pigment Epithelium , Tight Junctions , Curcumin/pharmacology , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/pathology , Diabetic Retinopathy/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism , Humans , Cellular Senescence/drug effects , Tight Junctions/drug effects , Tight Junctions/metabolism , Animals , Male , Apoptosis/drug effects , Cell Survival/drug effects , Blood-Retinal Barrier/drug effects , Blood-Retinal Barrier/metabolism , Blood-Retinal Barrier/pathology , Mice, Inbred C57BL , Mice
13.
J Virol ; 98(7): e0043324, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38888346

ABSTRACT

The cellular endosomal sorting complex required for transport (ESCRT) system comprises five distinct components and is involved in many different physiological processes. Recent studies have shown that different viruses rely upon the host ESCRT system for viral infection. However, whether this system is involved in white spot syndrome virus (WSSV) infection remains unclear. Here, we identified 24 homologs of ESCRT subunits in kuruma shrimp, Marsupenaeus japonicus, and found that some key components were strongly upregulated in shrimp after WSSV infection. Knockdown of key components of the ESCRT system using RNA interference inhibited virus replication, suggesting that the ESCRT system is beneficial for WSSV infection. We further focused on TSG101, a crucial member of the ESCRT-I family that plays a central role in recognizing cargo and activating the ESCRT-II and ESCRT-III complexes. TSG101 colocalized with WSSV in hemocytes. The addition of N16 (a TSG101 inhibitor) markedly decreased WSSV replication. TSG101 and ALIX of the ESCRT system interact with WSSV envelope proteins. The host proteins TSG101, RAB5, and RAB7, the viral protein VP28, and DNA were detected in endosomes isolated from hemocytes of WSSV-infected shrimp. Knockdown of Rab5 and Rab7 expression reduced viral replication. Taken together, these results suggest that the ESCRT system is hijacked by WSSV for transport through the early to late endosome pathway. Our work identified a novel requirement for the intracellular trafficking and infection of WSSV, and provided novel therapeutic targets for the prevention and control of WSSV in shrimp aquaculture. IMPORTANCE: Viruses utilize the ESCRT machinery in a variety of strategies for their replication and infection. This study revealed that the interaction of ESCRT complexes with WSSV envelope proteins plays a crucial role in WSSV infection in shrimp. The ESCRT system is conserved in the shrimp Marsupenaeus japonicus, and 24 homologs of the ESCRT system were identified in the shrimp. WSSV exploits the ESCRT system for transport and propagation via the interaction of envelope proteins with host TSG101 and ALIX in an endosome pathway-dependent manner. Understanding the underlying mechanisms of WSSV infection is important for disease control and breeding in shrimp aquaculture.


Subject(s)
DNA-Binding Proteins , Endosomal Sorting Complexes Required for Transport , Penaeidae , Virus Replication , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/physiology , White spot syndrome virus 1/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Penaeidae/virology , Penaeidae/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Endosomes/metabolism , Endosomes/virology , Hemocytes/virology , Hemocytes/metabolism , Host-Pathogen Interactions , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , RNA Interference
14.
Fish Shellfish Immunol ; 151: 109679, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844185

ABSTRACT

The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) typically composing of eight subunits (CSN1-8) mediates the process of deneddylation and deubiquitination. The fifth subunit of COP9 signalosome, CSN5, has special characteristics compared with the other seven subunits, and plays vital roles in the deneddylation activity and diverse cellular processes. However, the role of CSN5 in antiviral immunity is not clear. In this study, we identified 8 subunits (CSN1-8) of COP9 signalosome in shrimp Marsupenaeus japonicus. CSN1-6 were existed in all tested tissues, but CSN7-CSN8 were not detected in hepatopancreas. After WSSV challenged, the expression level of Csn1 to Csn4, and Csn6 to Csn8 were highly decreased, but the expression level of Csn5 was conspicuously increased in shrimp challenged by white spot syndrome virus (WSSV). The CSN5 was recombinantly expressed in Escherichia coli and its polyclonal antibody was prepared. The expression level of CSN5 was conspicuously increased at RNA and protein levels in the shrimp challenged by WSSV. After knockdown of Csn5 by RNA interference, the WSSV replication was obviously increased in shrimp. When injected the recombinant protein of CSN5 with the membrane penetrating peptide into shrimp, WSSV replication was inhibited and the survival rate of shrimp was significantly improved compared with control. We further analyzed the expression of antimicrobial peptides (AMPs) in Csn5-RNAi shrimp, and the results showed that the expression of several AMPs was declined significantly. These results indicate that CSN5 inhibits replication of WSSV via regulating expression of AMPs in shrimp, and the recombinant CSN5 might be used in shrimp aquaculture for the white spot syndrome disease control.


Subject(s)
Arthropod Proteins , COP9 Signalosome Complex , Immunity, Innate , Penaeidae , White spot syndrome virus 1 , Animals , Penaeidae/genetics , Penaeidae/immunology , COP9 Signalosome Complex/genetics , COP9 Signalosome Complex/immunology , White spot syndrome virus 1/physiology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary , Sequence Alignment/veterinary , Phylogeny
15.
J Hazard Mater ; 476: 134989, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38941833

ABSTRACT

The orpiment (As2S3) is an important secondary mineral in the geochemical process of arsenic (As) in the environment. The dissolution of orpiment has a close relationship with the migration and transformation of As. The dissolved species of As2S3 is closely related to sulfide (S-II) in the anoxic and sulfidic environment. This paper focuses on the various As species formed when As2S3 dissolved in the presence and absence of excess S-II under anoxic conditions with simulation tests via X-ray absorption spectroscopy (XAS), liquid chromatography with (hydride generation) atomic fluorescence spectrophotometry, and Raman spectroscopy. The results showed that the As produced when As2S3 dissolved in the excess S-II contained a mixture of arsenite and thioarsenite (ThioAsIII). Based on the linear combination fitting, ThioAsIII is the dominant As species (88.2 %) with arsenite as the leftover component. However, the percentage of ThioAsIII decreased to 43.7 % if As2S3 dissolved in the absence of excess S-II, indicting ThioAsIII favored under sulfidic conditions. The findings may give further insights about the role and formation mechanism of ThioAsIII in the dissolution process of As2S3. ENVIRONMENTAL IMPLICATION: The dissolution of crystallization orpiment has a close relationship with the transport of As in the environment. Qualitatively and quantitatively identification of the dissolved species of As2S3 in the presence and absence of excess S-II may be helpful for a better understanding and predicting the fate of As. The formed trithioarsenite was the dominant dissolved species compared to arsenite in the sulfidic system. It has higher mobility than AsV and AsIII, and has been found in many As-related adsorption/desorption and redox reactions. Therefore, great cautions should be given when choosing technologies to remediate the As contaminated soils and waters.

16.
Acta Pharmacol Sin ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844788

ABSTRACT

FAK (focal adhesion kinase) is widely involved in cancer growth and drug resistance development. Thus, FAK inhibition has emerged as an effective strategy for tumor treatment both as a monotherapy or in combination with other treatments. But the current FAK inhibitors mainly concentrate on its kinase activity, overlooking the potential significance of FAK scaffold proteins. In this study we employed the PROTAC technology, and designed a novel PROTAC molecule F2 targeting FAK based on the FAK inhibitor IN10018. F2 exhibited potent inhibitory activities against 4T1, MDA-MB-231, MDA-MB-468 and MDA-MB-435 cells with IC50 values of 0.73, 1.09, 5.84 and 3.05 µM, respectively. On the other hand, F2 also remarkably reversed the multidrug resistance (MDR) in HCT8/T, A549/T and MCF-7/ADR cells. Both the effects of F2 were stronger than the FAK inhibitor IN10018. To our knowledge, F2 was the first reported FAK-targeted PROTAC molecule exhibiting reversing effects on chemotherapeutic drug resistance, and its highest reversal fold could reach 158 times. The anti-tumor and MDR-reversing effects of F2 might be based on its inhibition on AKT (protein kinase B, PKB) and ERK (extracellular signal-regulated kinase) signaling pathways, as well as its impact on EMT (epithelial-mesenchymal transition). Furthermore, we found that F2 could reduce the protein level of P-gp in HCT8/T cells, thereby contributing to reverse drug resistance from another perspective. Our results will boost confidence in future research focusing on targeting FAK and encourage further investigation of PROTAC with potent in vivo effects.

17.
Front Bioeng Biotechnol ; 12: 1355617, 2024.
Article in English | MEDLINE | ID: mdl-38846802

ABSTRACT

Gliding is a crucial phase in swimming, yet the understanding of fluid force and flow fields during gliding remains incomplete. This study analyzes gliding through Computational Fluid Dynamics simulations. Specifically, a numerical model based on the Smoothed Particle Hydrodynamics (SPH) method for flow-object interactions is established. Fluid motion is governed by continuity, Navier-Stokes, state, and displacement equations. Modified dynamic boundary particles are used to implement solid boundaries, and steady and uniform flows are generated with inflow and outflow conditions. The reliability of the SPH model is validated by replicating a documented laboratory experiment on a circular cylinder advancing steadily beneath a free surface. Reasonable agreement is observed between the numerical and experimental drag force and lift force. After the validation, the SPH model is employed to analyze the passive drag, vertical force, and pitching moment acting on a streamlined gliding 2D swimmer model as well as the surrounding velocity and vorticity fields, spanning gliding velocities from 1 m/s to 2.5 m/s, submergence depths from 0.2 m to 1 m, and attack angles from -10° to 10°. The results indicate that with the increasing gliding velocity, passive drag and pitching moment increase whereas vertical force decreases. The wake flow and free surface demonstrate signs of instability. Conversely, as the submergence depth increases, there is a decrease in passive drag and pitching moment, accompanied by an increase in vertical force. The undulation of the free surface and its interference in flow fields diminish. With the increase in the attack angle, passive drag and vertical force decrease whereas pitching moment increases, along with the alteration in wake direction and the increasing complexity of the free surface. These outcomes offer valuable insights into gliding dynamics, furnishing swimmers with a scientific basis for selecting appropriate submergence depth and attack angle.

18.
Sci Rep ; 14(1): 12621, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38824201

ABSTRACT

Anaplasma and Ehrlichia are tick-borne bacterial pathogens that cause anaplasmoses and ehrlichioses in humans and animals. In this study, we examined the prevalence of Anaplasma and Ehrlichia species in ticks and domesticated animals in Suizhou County, Hubei Province in the central China. We used PCR amplification and DNA sequencing of the 16S rRNA, groEL, and gltA genes to analyze. We collected 1900 ticks, including 1981 Haemaphysalis longicornis and 9 Rhipicephalus microplus, 159 blood samples of goats (n = 152), cattle (n = 4), and dogs (n = 3) from May to August of 2023. PCR products demonstrated that Anaplasma bovis, Anaplasma capra, and an Ehrlichia species were detected in the H. longicornis with the minimum infection rates (MIR) of 1.11%, 1.32%, and 0.05%, respectively; A. bovis, A. capra, and unnamed Anaplasma sp. were detected in goats with an infection rate of 26.31%, 1.31% and 1.97%, respectively. Anaplasma and Ehrlichia species were not detected from cattle, dogs and R. microplus ticks. The genetic differences in the groEL gene sequences of the Anaplasma in the current study were large, whereas the 16S rRNA and gltA gene sequences were less disparate. This study shows that ticks and goats in Suizhou County, Hubei Province carry multiple Anaplasma species and an Ehrlichia species, with relatively higher infection rate of A. bovis in goats. Our study indicates that multiple Anaplasma and Ehrlichia species exist in ticks and goats in the central China with potential to cause human infection.


Subject(s)
Anaplasma , Anaplasmosis , Animals, Domestic , Ehrlichia , Genetic Variation , Goats , RNA, Ribosomal, 16S , Animals , Anaplasma/genetics , Anaplasma/isolation & purification , China/epidemiology , Ehrlichia/genetics , Ehrlichia/isolation & purification , Goats/microbiology , Dogs , Cattle , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Prevalence , Animals, Domestic/microbiology , RNA, Ribosomal, 16S/genetics , Ticks/microbiology , Ehrlichiosis/epidemiology , Ehrlichiosis/veterinary , Ehrlichiosis/microbiology , Phylogeny
19.
J Environ Manage ; 364: 121388, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38875980

ABSTRACT

Resource-based cities (RBCs) worldwide with a single industrial structure face the double pressures of sustainable development to promote development (i.e., industrial upgrading) and mitigating carbon emissions. Although building extraregional linkages is a potential path to advance this goal, the action of these linkages still requires study since there are many contradictory conclusions in the literature. To fill this gap, the study addresses the relationship between extraregional linkages, industrial upgrading, and the low-carbon transition in RBCs from 2012 to 2019 with the help of econometric panel models with proposed variables (e.g., the coupling coordination degree of extraregional technology and investment, CCD) built from multiple new data sources. The results are as follows. First, the diversification and specialization of the local industrial structure in RBCs both reduce carbon efficiency (CE). Second, extraregional technology, on its own, does not directly enhance CE as investments do. Third, the CCD not only serves to augment CE but also acts as a mitigating factor against CE reduction during industrial diversification. Based on the above findings, distinct low-carbon transition pathways are suggested for various types of RBCs, considering their positions within the extraregional linkage network.


Subject(s)
Carbon , Cities , Sustainable Development , Investments , Technology
20.
Huan Jing Ke Xue ; 45(6): 3493-3501, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897769

ABSTRACT

The high intensity of diverse human activities in urban-rural areas leads to complex soil Pb accumulation processes and high spatiotemporal heterogeneity, making it difficult to reveal the spatiotemporal characteristics of soil Pb accumulation in these areas. This study used a typical urban-rural area in a large city in Central China as the study area, constructed a soil Pb accumulation model, and established a spatiotemporal simulation method for soil Pb accumulation processes combining this model and land use classification and simulation results. Using this method, we simulated the soil Pb content in the study area from 2013 to 2040 and elucidated the future spatiotemporal variation characteristics of soil Pb content. The results showed that the average soil Pb content in the study area in 2013 was approximately 1.77 times the background value of the Pb content in the surface soil of the province where the city is located, indicating significant soil Pb pollution. The soil Pb content was predicted to continue increasing from 2013 to 2040, with relatively low increases (0.53-2.25 mg·kg-1) in the western, northern, and southern parts of the study area, accounting for 25.46 % of the total area, and relatively high increases (3.98-5.70 mg·kg-1) in the eastern part, accounting for 17.14 % of the total area. The increase in the area of forest land and the decrease in the area of water bodies and grassland in the eastern part of the study area led to a substantial rise in soil Pb content in this region; in addition, the spatial distribution of soil Pb content was highly correlated with the distribution of important factories and transportation facilities. This study overcomes the limitations of previous research that treated land use as unchanging and to a certain extent reflects the impact of regional land use changes on the heavy metal accumulation process. It provides a method for simulating the soil Pb accumulation process in urban-rural areas and a basis for controlling soil Pb pollution in the city's urban-rural areas.

SELECTION OF CITATIONS
SEARCH DETAIL