Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
J Ethnopharmacol ; 334: 118520, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964626

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Inflammation is directly related to disease progression and contributes significantly to the global burden of disease. Pothos chinensis (Raf.) Merr. (PCM) is commonly used in Yao medicine in China to treat tumors, and orthopedic illnesses such as knee osteoarthritis, and rheumatic bone discomfort. PCM was found to have significant anti-inflammatory properties in previous studies. AIM OF THE STUDY: To explore the active compounds of PCM and their anti-inflammatory pharmacological mechanisms through an integrated strategy of serum pharmacochemistry, network pharmacology, and serum metabolomics. MATERIALS AND METHODS: The qualitative and quantitative analyses of the chemical components of PCM were performed using UPLC-QTOF-MS/MS and UPLC, respectively, and the prototype components of PCM absorbed into the blood were analyzed. Based on the characterized absorbed into blood components, potential targets and signaling pathways of PCM anti-inflammatory were found using network pharmacology. Furthermore, metabolomics studies using UPLC-QTOF-MS/MS identified biomarkers and metabolic pathways related to the anti-inflammatory effects of PCM. Finally, the hypothesized mechanisms were verified by in vivo and in vitro experiments. RESULTS: Forty chemical components from PCM were identified for the first time, and seven of them were quantitatively analyzed, while five serum migratory prototype components were found. Network pharmacology KEGG enrichment analysis revealed that arachidonic acid metabolism, Tyrosine metabolism, TNF signaling pathway, NF-κB signaling pathway, and phenylalanine metabolism were the main signaling pathways of PCM anti-inflammatory. Pharmacodynamic results showed that PCM ameliorated liver injury and inflammatory cell infiltration and downregulated protein expression of IL-1ß, NF-κB p65, and MyD88 in the liver. Metabolomics studies identified 53 different serum metabolites, mainly related to purine and pyrimidine metabolism, phenylalanine metabolism, primary bile acid biosynthesis, and glycerophospholipid metabolism. The comprehensive results demonstrated that the anti-inflammatory modulatory network of PCM was related to 5 metabolites, 3 metabolic pathways, 7 targets, and 4 active components of PCM. In addition, molecular docking identified the binding ability between the active ingredients and the core targets, and the anti-inflammatory efficacy of the active ingredients was verified by in vitro experiments. CONCLUSION: Our study demonstrated the anti-inflammatory effect of PCM, and these findings provide new insights into the active ingredients and metabolic mechanisms of PCM in anti-inflammation.

2.
Phytomedicine ; 132: 155545, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38972238

ABSTRACT

BACKGROUNDS: Idiopathic pulmonary fibrosis (IPF) is a persistent and advanced pulmonary ailment. The roles of innate immunity and adaptive immunity are pivotal in the evolution of IPF. An ill-adjusted interaction between epithelial cells and immune cells is responsible for initiating the epithelial-mesenchymal transition (EMT) process and sustaining chronic inflammation, thereby fostering fibrosis progression. The intricacy of IPF pathogenesis has hindered the availability of efficacious agents. Elephantopus scaber Linn. (ESL) is a canonical Chinese medicine with significant immunoregulatory effects, and its aqueous extract has been proven to attenuate IPF symptoms in bleomycin (BLM)-induced mice. However, the underlying mechanism through which ESL relieves IPF remains unclear. AIM: To validate whether ESL reverses IPF by mediating the immune response and EMT. METHODS: Ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and UPLC were used to identify the components and determine the concentrations of the specific compounds in the ESL. Network pharmacology and molecular docking were applied to predict the potential mechanism underlying the anti-IPF effect of ESL. BLM-induced IPF mice were used to validate the anti-IPF effect of ESL, and lung tissue was collected to test putative pathways involved in inflammation and EMT via immunohistochemistry (ICH), real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. RESULTS: Sixty-one compounds were identified, and thirteen main ingredients were quantified in the ESL. In silico experiments predicted that the IPF-mediated reversal of adverse effects by ESL would be related to interruption of the Toll-like receptor 4 (TLR4)/nuclear factor-k-gene binding (NF-ĸB) inflammatory pathway and the transforming growth factor-beta l (TGF-ß1)/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/forkhead box O3 (FOXO3a) fibrosis pathway. In vivo experiments showed that ESL alleviates BLM-induced lung inflammation and fibrosis by reducing neutrophil aggregation and fibroblast foci, similar to the effects of the positive control drug pirfenidone (PFD). ESL markedly inhibited the transcription of TNF-α, IL-1ß, and IL-6, which are downstream genes of the NF-κB signaling pathway. Furthermore, the protein levels of TLR4 and p-NF-κB were correspondingly inhibited in response to ESL treatment. Additionally, ESL reverses BLM-induced changes in the expression of EMT-related biological characteristic indicators (collagen I [COLIA1], E-cadherin, and alpha smooth muscle actin [α-SMA]) at the messenger ribonucleic acid (mRNA) level and markedly inhibits the expression of EMT-related upstream proteins (TGF-ß1, p-PI3K, p-Akt, and p-FOXO3a). CONCLUSION: Our research suggested that ESL attenuates BLM-induced IPF through mediating the EMT process via the TGF-ß1/PI3K/Akt/FOXO3a signaling pathway and inhibiting inflammation through the TLR4/NF-κB signaling pathway, highlighting that ESL can serve as an immunoregulator for relieving the abnormal immune response and reversing the EMT in IPF.

3.
Sci Rep ; 13(1): 22449, 2023 12 17.
Article in English | MEDLINE | ID: mdl-38105335

ABSTRACT

Jasminum elongatum (JE), an ethnic Chinese medicine, is widely used in the Lingnan region of China, because of its analgesic and antidiarrheal action, as well as its anti-inflammatory effects in gastrointestinal diseases. However, whether JE could against ulcerative colitis (UC) remains unclear. This research aims to reveal JE in treating UC and clarify the underlying mechanism. We used the 2.5% dextran sulfate sodium (DSS)-induced UC mice (C57BL/6J) to evaluate the therapeutic effects of JE. Metabolomics of serum and network pharmacology were combined to draw target-metabolite pathways. Apart from that, the targets of associated pathways were confirmed, and the mechanism of action was made clear, using immunohistochemistry. The pharmacodynamic results, including disease activity index (DAI), histological evaluation, and inflammatory cytokines in colon tissues, demonstrated that JE significantly relieved the physiological and pathological symptoms of UC. Network pharmacology analysis indicated 25 core targets, such as TNF, IL-6, PTGS2 and RELA, and four key pathways, including the NF-κB signaling pathway and arachidonic acid metabolism pathway, which were the key connections between JE and UC. Metabolomics analysis identified 45 endogenous differential metabolites and 9 metabolic pathways by enrichment, with the arachidonic acid metabolism pathway being the main metabolism pathway, consistent with the prediction of network pharmacology. IκB, p65 and COX-2 were identified as key targets and this study demonstrated for the first time that JE reverses 2.5% DSS-induced UC in mice via the IκB/p65/COX-2/arachidonic acid pathway. This study reveals the complex mechanisms underlying the therapeutic effects of JE on UC and provides a new approach to identifying the underlying mechanisms of the pharmacological action of Chinese natural medicines such as JE.


Subject(s)
Colitis, Ulcerative , Colitis , Jasminum , Animals , Mice , Mice, Inbred C57BL , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Arachidonic Acid , Cyclooxygenase 2 , Network Pharmacology , Colon , NF-kappa B , Dextran Sulfate/toxicity , Disease Models, Animal
4.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4421-4428, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802868

ABSTRACT

This study aimed to provide scientific evidence for predicting quality markers(Q-markers) of Elephantopus scaber by establishing UPLC fingerprint of E. scaber from different geographical origins and determining the content of 13 major components, as well as conducting in vitro anti-cancer activity investigation of the main components. The chromatographic column used was Waters CORTECS UPLC C_(18)(2.1 mm×150 mm, 1.6 µm), and the mobile phase consisted of acetonitrile and 0.1% formic acid solution(gradient elution). The column temperature was set at 30 ℃, and the flow rate was 0.2 mL·min~(-1). The injection volume was 1 µL, and the detection wavelength was 240 nm. The UPLC fingerprint of E. scaber was fitted using the Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine(2012 edition) to determine common peaks, evaluate similarity, identify and determine the content of major components. The CCK-8 assay was used to explore the inhibitory effect of the main components on the proliferation of lung cancer cells. The results showed that in the established UPLC fingerprint of E. scaber, 35 common peaks were identified. Thirteen major components, including neochlorogenic acid(peak 1), chlorogenic acid(peak 2), cryptochlorogenic acid(peak 3), caffeic acid(peak 4), schaftoside(peak 6), galuteolin(peak 9), isochlorogenic acid B(peak 10), isochlorogenic acid A(peak 12), isochlorogenic acid C(peak 18), deoxyelephantopin(peak 28), isodeoxyelephantopin(peak 29), isoscabertopin(peak 31), and scabertopin(peak 32) were identified and quantified, and a quantitative analysis method was established. The results of the in vitro anti-cancer activity study showed that deoxyelephantopin, isodeoxyelephantopin, isoscabertopin, and scabertopin in E. scaber exhibited inhibition rates of lung cancer cell proliferation exceeding 80% at a concentration of 10 µmol·L~(-1), higher than the positive drug paclitaxel. These results indicate that the fingerprint of E. scaber is highly characteristic, and the quantitative analysis method is accurate and stable, providing references for the research on quality standards of E. scaber. Four sesquiterpene lactones in E. scaber show significant anti-cancer activity and can serve as Q-markers for E. scaber.


Subject(s)
Asteraceae , Drugs, Chinese Herbal , Lung Neoplasms , Humans , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Asteraceae/chemistry , Lung Neoplasms/drug therapy
5.
Article in English | MEDLINE | ID: mdl-35422619

ABSTRACT

Purpose: This study explored the value of the serum creatinine/cystatin C (Cr/CysC) ratio in diagnosing the reduction of muscle strength in men with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Patients and Methods: In this study, we enrolled 72 male patients with AECOPD and 32 male patients with stable chronic obstructive pulmonary disease (COPD). We compared clinical characteristics between the AECOPD and stable COPD groups. Then, we subdivided AECOPD patients into normal muscle strength and low muscle strength groups; we compared the clinical characteristics between these two groups. We analyzed the relationships of serum creatinine (Cr), cystatin C (CysC), and Cr/CysC ratio with clinical characteristics in male AECOPD patients. We also investigated whether the Cr/CysC ratio could aid in the diagnosis of muscle strength decline via receiver operating characteristic curve and binary logistic regression analysis. Results: We found that handgrip strength, Cr/CysC ratio, serum Cr, FEV1, FVC, and FEV1%pred were lower in AECOPD patients than in stable COPD patients. Among AECOPD patients, BMI, weight, FEV1, FVC, FEV1%pred, and Cr/CysC ratio were lower in the low muscle strength group than in the normal muscle strength group; there were more patients with ≥2 acute exacerbations within the past year in the low muscle strength group. The Cr/CysC ratio was correlated with handgrip strength, FEV1, FVC, FEV1%pred, BMI and weight. The area under curve for low handgrip strength was greater for the Cr/CysC ratio than for Cr. Binary logistic regression analysis showed that a Cr/CysC ratio <0.99 was a risk factor for decreased muscle strength in male patients with AECOPD. Conclusion: The Cr/CysC ratio is a useful predictor of muscle strength decline in male AECOPD patients, while a low Cr/CysC ratio is a risk factor for muscle strength decline in male patients with AECOPD.


Subject(s)
Cystatin C , Pulmonary Disease, Chronic Obstructive , Creatinine , Female , Hand Strength , Humans , Male , Respiratory Function Tests
SELECTION OF CITATIONS
SEARCH DETAIL