Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 193(3): 2164-2179, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37610417

ABSTRACT

The lipid transport protein (LTP) product of the AsE246 gene of Chinese milk vetch (Astragalus sinicus) contributes to the transport of plant-synthesized lipids to the symbiosome membranes (SMs) that are required for nodule organogenesis in this legume. However, the mechanisms used by nodule-specific LTPs remain unknown. In this study, a functional protein in the DnaJ-like family, designated AsDJL1, was identified and shown to interact with AsE246. Immunofluorescence showed that AsDJL1 was expressed in infection threads (ITs) and in nodule cells and that it co-localized with rhizobium, and an immunoelectron microscopy assay localized the protein to SMs. Via co-transformation into Nicotiana benthamiana cells, AsDJL1 and AsE246 displayed subcellular co-localization in the cells of this heterologous host. Co-immunoprecipitation assays confirmed that AsDJL1 interacted with AsE246 in nodules. The essential interacting region of AsDJL1 was determined to be the zinc finger domain at its C-terminus. Chinese milk vetch plants transfected with AsDJL1-RNAi had significantly decreased numbers of ITs, nodule primordia and nodules as well as reduced (by 83%) nodule nitrogenase activity compared with the controls. By contrast, AsDJL1 overexpression led to increased nodule fresh weight and nitrogenase activity. RNAi-AsDJL1 also significantly affected the abundance of lipids, especially digalactosyldiacylglycerol, in early-infected roots and transgenic nodules. Taken together, the results of this study provide insights into the symbiotic functions of AsDJL1, which may participate in lipid transport to SMs and play an essential role in rhizobial infection and nodule organogenesis.


Subject(s)
Astragalus Plant , Fabaceae , Rhizobium , Nitrogen Fixation/genetics , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Carrier Proteins/metabolism , Astragalus Plant/metabolism , Nitrogenase/metabolism , Lipids , Symbiosis/genetics , Plant Root Nodulation , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Plant Physiol ; 193(2): 1527-1546, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37432453

ABSTRACT

In the Rhizobium-Legume symbiosis, the nodulation outer protein P (NopP) effector is one of the key regulators for rhizobial infection and nodule organogenesis. However, the molecular mechanism through which host legume plants sense NopP remains largely unknown. Here, we constructed an nopP deletion mutant of Mesorhizobium huakuii and found that nopP negatively regulates nodulation on Chinese milk vetch (Astragalus sinicus). Screening for NopP interacting proteins in host plants using the yeast 2-hybrid system identified NopP interacting protein 43 (AsNIP43), which encodes a G-type receptor-like kinase (LecRLK). The B-lectin domain at the N terminus of AsNIP43 was essential in mediating its interaction with NopP, which was confirmed in vitro and in vivo. Subcellular localization, co-localization, and gene expression analyses showed that AsNIP43 and NopP function tightly associated with earlier infection events. RNA interference (RNAi) knockdown of AsNIP43 expression by hairy root transformation led to decreased nodule formation. AsNIP43 plays a positive role in symbiosis, which was further verified in the model legume Medicago truncatula. Transcriptome analysis indicated that MtRLK (a homolog of AsNIP43 in M. truncatula) may function to affect defense gene expression and thus to regulate early nodulation. Taken together, we show that LecRLK AsNIP43 is a legume host target that interacts with rhizobia effector NopP is essential for rhizobial infection and nodulation.


Subject(s)
Astragalus Plant , Medicago truncatula , Rhizobium , Symbiosis/genetics , Plant Root Nodulation/genetics , Phenotype , Carrier Proteins/genetics , Medicago truncatula/genetics , Rhizobium/physiology
3.
Mol Plant Microbe Interact ; 36(10): 623-635, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37366577

ABSTRACT

Lipopolysaccharide (LPS) is a ubiquitous microbial-associated molecular pattern. Plants can sense the three components of LPS, including core polysaccharide, lipid A, and O-antigen. LPS biosynthesis is an essential factor for the successful establishment of symbiosis in the rhizobium-legume plant system. The MCHK_1752 gene (Mesorhizobium huakuii 7653R gene) encodes O-antigen polymerase and affects the synthesis of O-antigen. Here, we investigated the symbiotic phenotypes of six Astragalus sinicus accessions inoculated with the MCHK_1752 deletion mutant strain. The results revealed that the MCHK_1752 deletion mutant strain had a suppressing effect on the symbiotic nitrogen fixation of two A. sinicus accessions, a promoting effect in three A. sinicus accessions, and no significant effect in one A. sinicus accessions. In addition, the effect of MCHK_1752 on the phenotype was confirmed by its complementary strains and LPS exogenous application. Deletion of MCHK_1752 showed no effect on the growth of a strain, but affected biofilm formation and led to higher susceptibility to stress in a strain. At the early symbiotic stage, Xinzi formed more infection threads and nodule primordia than Shengzhong under inoculation with the mutant, which might be an important reason for the final symbiotic phenotype. A comparison of early transcriptome data between Xinzi and Shengzhong also confirmed the phenotype at the early symbiotic stage. Our results suggest that O-antigen synthesis genes influence symbiotic compatibility during symbiotic nitrogen fixation. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Astragalus Plant , Mesorhizobium , Lipopolysaccharides , O Antigens/genetics , Symbiosis/genetics , Mesorhizobium/genetics , Nitrogen Fixation , Root Nodules, Plant
4.
Microbiol Spectr ; 11(1): e0335022, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36633436

ABSTRACT

Rhizobia can infect legumes and induce the coordinated expression of symbiosis and defense genes for the establishment of mutualistic symbiosis. Numerous studies have elucidated the molecular interactions between rhizobia and host plants, which are associated with Nod factor, exopolysaccharide, and T3SS effector proteins. However, there have been relatively few reports about how the host plant recognizes the outer membrane proteins (OMPs) of rhizobia to mediate symbiotic nodulation. In our previous work, a gene (Mhopa22) encoding an OMP was identified in Mesorhizobium huakuii 7653R, whose homologous genes are widely distributed in Rhizobiales. In this study, a germin-like protein GLP1 interacting with Mhopa22 was identified in Astragalus sinicus. RNA interference of AsGLP1 resulted in a decrease in nodule number, whereas overexpression of AsGLP1 increased the number of nodules in the hairy roots of A. sinicus. Consistent symbiotic phenotypes were identified in Medicago truncatula with MtGLPx (refer to medtr7g111240.1, the isogeny of AsGLP1) overexpression or Tnt1 mutant (glpx-1) in symbiosis with Sinorhizobium meliloti 1021. The glpx-1 mutant displayed hyperinfection and the formation of more infection threads but a decrease in root nodules. RNA sequencing analysis showed that many differentially expressed genes were involved in hormone signaling and symbiosis. Taken together, AsGLP1 and its homology play an essential role in mediating the early symbiotic process through interacting with the OMPs of rhizobia. IMPORTANCE This study is the first report to characterize a legume host plant protein to sense and interact with an outer membrane protein (OMP) of rhizobia. It can be speculated that GLP1 plays an essential role to mediate early symbiotic process through interacting with OMPs of rhizobia. The results provide deeper understanding and novel insights into the molecular interactive mechanism of a legume symbiosis signaling pathway in recognition with rhizobial OMPs. Our findings may also provide a new perspective to improve the symbiotic compatibility and nodulation of legume.


Subject(s)
Medicago truncatula , Rhizobium , Membrane Proteins/metabolism , Symbiosis , Rhizobium/metabolism , Plant Roots/metabolism , Plant Proteins/genetics , Medicago truncatula/genetics , Medicago truncatula/metabolism
5.
J Inorg Biochem ; 237: 112011, 2022 12.
Article in English | MEDLINE | ID: mdl-36252336

ABSTRACT

Three iridium (III) polypyridine complexes [Ir(bzq)2(maip)](PF6) (Ir1,bzq = benzo[h]quinoline, maip = 3-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline), [Ir(bzq)2(apip)](PF6) (Ir2, apip = 2-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ir(bzq)2(paip)](PF6) (Ir3, paip = 4-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) were synthesized and characterized. The cytotoxic activities of the three complexes against human osteosarcoma HOS, U2OS, MG63 and normal LO2 cells were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method. The results showed that Ir1-3 exhibited moderate antitumor activity against HOS with IC50 of 21.8 ± 0. 4 µM,10.5 ± 1.8 µM and 7.4 ± 0.4 µM, respectively. We found that Ir1-3 can effectively inhibit HOS cells growth and blocked the cell cycle at the G0/G1 phase. Further studies revealed that complexes can increase intracellular reactive oxygen species (ROS) and Ca2+, which accompanied by mitochondria-mediated intrinsic apoptosis pathway. In addition, autophagy was also investigated. Taken together, the complexes induce HOS apoptosis through a ROS-mediated mitochondrial dysfunction pathway and inhibition of the PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin) signaling pathway. This study provides useful help for understanding the anticancer mechanism of iridium (III) complexes toward osteosarcoma treatment.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Osteosarcoma , Humans , Iridium/pharmacology , Reactive Oxygen Species/metabolism , Phenanthrolines/pharmacology , Phosphatidylinositol 3-Kinases , Coordination Complexes/pharmacology , Cell Line, Tumor , Cell Proliferation , Apoptosis , Antineoplastic Agents/pharmacology , Osteosarcoma/drug therapy
6.
Front Immunol ; 13: 868809, 2022.
Article in English | MEDLINE | ID: mdl-35757765

ABSTRACT

Background: The clinical significance of liver stiffness (LS) measured by shear wave elastography (SWE) in programmed cell death protein-1 (PD-1) inhibitors treated advanced hepatocellular carcinoma (HCC) patients remains unknown. This study aimed to explore the prognostic value of baseline LS by SWE prior to PD-1 inhibitor treatment in combination with lenvatinib. Methods: We retrospectively evaluated patients (n=133) with HCC who received anti-PD-1 antibodies plus lenvatinib at two high-volume medical centres, between January 2020 and June 2021. Univariate and multivariate logistic regression analysis were used to develop a novel nomogram. RNA sequencing and immunohistochemical staining were used to assess the heterogeneity of biological and immune characteristics associated with tumor stiffness. Results: The objective response rate (ORR) and disease control rate (DCR) of the whole population were 23.4% and 72.2%, respectively. A LS value of the baseline tumorous foci of 19.53 kPa had the maximum sum of sensitivity and specificity, making it the optimal cut-off value for predicting PD-1 inhibitor efficacy. The nomogram comprised baseline tumor LS and albumin-bilirubin grade (ALBI), which provided favorable calibration and discrimination in the training dataset with an AUC of 0.840 (95%CI: 0.750-0.931) and a C-index of 0.828. Further, it showed acceptable discrimination in the validation cohort, with an AUC of 0.827 (95%CI: 0.673-0.980) and C-index of 0.803. The differentially expressed genes enriched in high stiffness tumors were predominantly associated with metabolic pathways, while those enriched in low stiffness tumors were related to DNA damage repair. Furthermore, patients with high stiffness tumors had a relatively lower infiltration of immune cells and histone deacetylase pathway inhibitors were identified as candidate drugs to promote the efficacy of immunotherapy. Conclusions: Baseline LS value of tumorous foci by SWE-that is, before administration of a PD-1 inhibitor in combination with lenvatinib-is a convenient predictor of PD-1 inhibitor efficacy in patients with advanced HCC, which has potential to be used for pretreatment stratification to optimize treatment of advanced HCC.


Subject(s)
Carcinoma, Hepatocellular , Elasticity Imaging Techniques , Liver Neoplasms , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/drug therapy , Humans , Immune Checkpoint Inhibitors/therapeutic use , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Phenylurea Compounds , Prognosis , Quinolines , Retrospective Studies
7.
Clin Epigenetics ; 14(1): 70, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35606881

ABSTRACT

BACKGROUND: Alterations in histone modifications have been reported to be related to tumorigenicity and tumor progression. However, whether histone modification can aid the classification of patients or influence clinical behavior in patients with colon cancer remains unclear. Therefore, this study aimed to evaluate histone modifier expression patterns using the unsupervised clustering of the transcriptomic expressions of 88 histone acetylation and methylation regulators. RESULTS: In this study, by consensus clustering analysis based on the transcriptome data of 88 histone modification regulators, we identified four distinct expression patterns of histone modifiers associated with different prognoses, intrinsic fluorouracil sensitivities, biological pathways, and tumor microenvironment characteristics among 1372 colon cancer samples. In these four clusters, the HMC4 cluster represented a stroma activation phenotype characterized by both the worst prognosis and lowest response rates to fluorouracil treatment. Then, we established a scoring scheme comprising 155 genes designated as "HM_score" by using the Boruta algorithm to distinguish colon cancer patients within the HMC4 cluster. Patients with a high HM_score were considered to have high stromal pathway activation, high stromal fraction, and an unfavorable prognosis. Further analyses indicated that a high HM_score also correlated with reduced therapeutic benefits from fluorouracil chemotherapy. Moreover, through CRISPR library screening, ZEB2 was found to be a critical driver gene that mediates fluorouracil resistance, which is associated with histone modifier expression patterns. CONCLUSIONS: This study highlights that characterizing histone modifier expression patterns may help better understand the epigenetic mechanisms underlying tumor heterogeneity in patients with colon cancer and provide more personalized therapeutic strategies.


Subject(s)
Colonic Neoplasms , Histones , Acetylation , Biomarkers, Tumor/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , DNA Methylation , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Gene Expression Regulation, Neoplastic , Histones/genetics , Histones/metabolism , Humans , Prognosis , Tumor Microenvironment
8.
Mol Plant Microbe Interact ; 35(4): 311-322, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34978930

ABSTRACT

Gram-negative bacteria can produce outer membrane vesicles (OMVs), and most functional studies of OMVs have been focused on mammalian-bacterial interactions. However, research on the OMVs of rhizobia is still limited. In this work, we isolated and purified OMVs from Sinorhizobium fredii HH103 under free-living conditions that were set as control (C-OMVs) and symbiosis-mimicking conditions that were induced by genistein (G-OMVs). The soybean roots treated with G-OMVs displayed significant deformation of root hairs. G-OMVs significantly induced the expression of nodulation genes related to early symbiosis, while they inhibited that of the defense genes of soybean. Proteomics analysis identified a total of 93 differential proteins between C-OMVs and G-OMVs, which are mainly associated with ribosome synthesis, flagellar assembly, two-component system, ABC transporters, oxidative phosphorylation, nitrogen metabolism, quorum sensing, glycerophospholipid metabolism, and peptidoglycan biosynthesis. A total of 45 differential lipids were identified through lipidomics analysis. Correlation analysis of OMV proteome and lipidome data revealed that glycerophospholipid metabolism is the enriched Kyoto Encyclopedia of Genes and Genomes metabolic pathway, and the expression of phosphatidylserine decarboxylase was significantly up-regulated in G-OMVs. The changes in three lipids related to symbiosis in the glycerophospholipid metabolism pathway were verified by enzyme-linked immunosorbent assay. Our results indicate that glycerophospholipid metabolism contributes to rhizobia-soybean symbiosis via OMVs.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Fabaceae , Rhizobium , Sinorhizobium fredii , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fabaceae/microbiology , Glycerophospholipids/metabolism , Lipids , Mammals/metabolism , Sinorhizobium fredii/genetics , Glycine max/microbiology , Symbiosis/genetics
9.
J Inorg Biochem ; 225: 111603, 2021 12.
Article in English | MEDLINE | ID: mdl-34564032

ABSTRACT

Two iridium (III) polypyridine complexes [Ir(ppy)2(BIP)]PF6 (ppy = 2-phenylpyridine, BIP = 2-biphenyl-1H-imidazo[4,5-f][1,10]phenanthroline, Ir1), [Ir(piq)2(BIP)]PF6 (piq = 1-phenylisoquinoline, Ir2) and their liposomes Ir1lipo and Ir2lipo were synthesized and characterized. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to evaluate cytotoxic activity against several cancer cells (A549, HepG2, SGC-7901, Bel-7402, HeLa) and non-cancer cell (mouse embryonic fibroblast, NIH3T3). The results showed that Ir1lipo displays the high cytotoxicity toward SGC-7901 with IC50 value of 5.8 ± 0.2 µM, while the complexes have no cytotoxicity toward A549, HepG2, Bel-7402 and HeLa cells. The cell colony demonstrated that the iridium (III) complexes-loaded liposomes can inhibit cell proliferation, induce cell cycle arrest at G0/G1 phase. Moreover, they also cause autophagy, induce a decrease of mitochondrial membrane potential and increase intracellular reactive oxygen species (ROS) content. These results suggest that the complexes encapsulated liposomes Ir1lipo and Ir2lipo inhibit the growth of SGC-7901 cells through a ROS-mediated mitochondrial dysfunction and activating the PI3K (phosphoinositide-3 kinase)/ AKT (protein kinase B) signaling pathways.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Drug Carriers/chemistry , Liposomes/chemistry , Pyridines/pharmacology , Stomach Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Iridium/chemistry , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/drug effects , NIH 3T3 Cells , Pyridines/chemical synthesis , Reactive Oxygen Species/metabolism
10.
Phys Chem Chem Phys ; 23(30): 16357-16365, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34318838

ABSTRACT

Developing ambipolar organic semiconducting materials is essential for use in complementary-like inverters and light-emitting transistors. In this study, three new dithienocoronenediimide (DTCDI)-derived triads, DTCDI-BT, DTCDI-BBT and DTCDI-BNT, were designed and synthesized, in which various sizes of terminal groups, i.e., thiophene (T), benzo[b]thiophene (BT) and naphtha[2,3-b]thiophene (NT) were substituted at the α-positions of the two thiophene rings of DTCDI, respectively. The DFT calculations reveal that the HOMO energy levels of the three triads when compared to that of the parent DTCDI-core (-5.99 eV) are significantly increased to -5.59, -5.59 and -5.45 eV for DTCDI-BT, DTCDI-BBT and DTCDI-BNT, respectively, whereas the LUMO energy levels (-3.07 eV ∼ -3.14 eV) are almost identical with that of the DTCDI-core (-3.10 eV). The results predict that the triads could possess ambipolar transport properties in organic field-effect transistor (OFET) applications. In fact, under an ambient atmosphere, solution-processed bottom-gate top-contact (BGTC) transistors exhibit ambipolar charge transport properties by tuning the HOMOs of the DTCDI-based triads so that they were suitable for hole injection, resulting in balanced maximum electron and hole mobilities of 1.66 × 10-3 and 1.02 × 10-3 cm2 V-1 s-1 for DTCDI-BT, 2.60 × 10-2 and 3.60 × 10-2 cm2 V-1 s-1 for DTCDI-BBT, and 2.43 × 10-3 and 4.15 × 10-3 cm2 V-1 s-1 for DTCDI-BNT, respectively. This is the first time that the DTCDI building block has been used to develop ambipolar small molecular semiconductors, and achieved a device performance comparable to that of the DTCDI-based polymeric semiconductors. In addition, DTCDI-BBT-based complementary-like inverters were made, and the inverter devices operated well in both p-mode and n-mode under ambient conditions. The results show that the DTCDI is a promising π-electron-deficient building block which could be further used to develop ambipolar semiconducting materials for OFET devices.

11.
Adv Mater ; 32(37): e2003121, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32743918

ABSTRACT

With the rapid development of human society, consumer electronics have brought marvelous changes to human daily life, but they are accompanied by the much higher demand of display quality and visual experience. Therefore, ideal conversion among the three primary colors-red (R), green (G), and blue (B)-in a single pixel has been a better way to avoid the insurmountable technical barrier of subpixel technology of modern displays. Electrofluorochromic (EFC) materials capable of a novel luminescent switching, open a powerful way to design optoelectronic devices for displays and information storage etc. Colorful EFC devices, especially emitting the ideal three primary colors without subpixel technology, have been a challenge for years. Herein, a long-awaited single-pixel device with RGB color is fabricated successfully based on proton-coupled electron transfer. The RGB EFC device exhibits outstanding EFC properties, such as low turn-on voltage (+1.0 and -1.0 V), large color gamut, and good stability (500 cycles for each color). Prototypes of colorful alphanumeric displays are well demonstrated in a facile way. The success of this new exploration of single-pixel RGB EFC device not only provides the possibility of full-color emission in EFC devices, but also will widely broaden the EFC system and their applications.

12.
ACS Appl Mater Interfaces ; 12(20): 23225-23235, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32252522

ABSTRACT

Altering the charge carrier transport polarities of organic semiconductors by molecular orbital distribution has gained great interest. Herein, we report two isomeric azulene-decorated naphthodithiophene diimide (NDTI)-based triads (e.g., NDTI-B2Az and NDTI-B6Az), in which two azulene units were connected with NDTI at the 2-position of the azulene ring in NDTI-B2Az, whereas two azulene units were incorporated with NDTI at the 6-position of the azulene ring in NDTI-B6Az. The two isomeric triads were excellently soluble in common organic solvents. Density functional theory calculations on the molecular orbital distributions of the triads reveal that the lowest unoccupied molecular orbitals are completely delocalized over the entire molecule for both NDTI-B2Az and NDTI-B6Az, indicating great potential for n-type transport behavior, whereas the highest occupied molecular orbitals are mainly delocalized over the entire molecule for NDTI-B2Az or only localized at the two terminal azulene units for NDTI-B6Az, implying great potential for p-type transport behavior for the former and a disadvantage of hole carrier transport for the latter. Under ambient conditions, solution-processed bottom-gate top-contact transistors based on NDTI-B2Az showed ambipolar field-effect transistor (FET) characteristics with high electron and hole mobilities of 0.32 (effective electron mobility ≈0.14 cm2 V-1 s-1 according to a reliability factor of 43%) and 0.03 cm2 V-1 s-1 (effective hole mobility ≈0.01 cm2 V-1 s-1 according to a reliability factor of 33%), respectively, whereas a typically unipolar n-channel behavior is found for a film of NDTI-B6Az with a high electron mobility up to 0.13 cm2 V-1 s-1 (effective electron mobility ≈0.06 cm2 V-1 s-1 according to a reliability factor of 43%). The results indicate that the polarity change of organic FETs based on the two isomeric triads could be controlled by the molecular orbital distributions through the connection position between the azulene unit and NDTI.

13.
Eur J Pharmacol ; 858: 172480, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31228453

ABSTRACT

Bone formation refers to a series of complex events related to the activities of osteoblasts. In this study, we evaluated the osteogenesis activity of a natural compound named isocoumarin A that was isolated from the rhizomes of Polygonum amplexicaule on the non-transformed preosteoblastic cell line MC3T3-E1 for an in vitro study, and the results revealed that it increased the proliferation and promoted the mineralization of the extracellular matrix of MC3T3-E1 cells after treatment for 3 d in a dose-dependent manner. The cell metabolic activity peaked at 169% at 10 µM, and the activity of alkaline phosphatase (ALP) tripled to 15.94 U/mg compared with the control group. The protein levels of morphogenetic protein 2 (BMP-2), runt-related transcription factor 2 (RUNX2), ALP, and the mRNA levels of ALP, type I collagen (COL-1), and osteocalcin (OCN) were also upregulated after isocoumarin A administration. The mechanism investigation revealed that these effects were associated with the activation of the p-Akt/p-Erk1/2-activated BMP/RUNX2 signaling pathway. Subsequently, the in vivo investigation on the zebrafish embryos model demonstrated that isocoumarin A (0.30 mM) increased the number of vertebrae (5.38 ±â€¯2.07 pcs) and the vertebral area (433.25 ±â€¯111.77 µm2) in the development process of zebrafish embryos after a 7-day postfertilization (dpf) culture compared with the control group (2.50 ±â€¯1.16 pcs and 209.75 ±â€¯86.40 µm2). Together, these results indicated that isocoumarin A could be viewed as a promising candidate in early drug discovery and development to promote the healing of fractures and postmenopausal osteoporosis.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Isocoumarins/pharmacology , Osteogenesis/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , 3T3 Cells , Animals , Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Mice , Signal Transduction/drug effects , Zebrafish
14.
iScience ; 13: 478-487, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30880044

ABSTRACT

Bioluminescence, wherein marine and terrestrial organisms chemically produce light for communication, is a burgeoning area of research. Herein, we demonstrate a new series of artificial chemiluminescent compounds inspired by the enol-degradation reaction of natural bioluminescent molecules, luciferins. Based on systematic optical experiments, isotope labeling, and theoretical calculations, the chemiluminescent mechanism of these new materials and the relationship of enol-degradation reaction and chemiluminescence are fully discussed. The color and efficiency of the artificial chemiluminescent materials can be easily adjusted, and blue (486 nm), yellow (565 nm), and near-infrared (756 nm) luminescence can thus be obtained. The findings and in-depth understanding herein may accelerate the development of bio/chemiluminescent materials for analytical applications and non-invasive bioluminescence imaging.

15.
Plant Physiol ; 180(1): 509-528, 2019 05.
Article in English | MEDLINE | ID: mdl-30765481

ABSTRACT

Plant nonspecific lipid transfer proteins (nsLTPs) are involved in a number of biological processes including root nodule symbiosis. However, the role of nsLTPs in legume-rhizobium symbiosis remains poorly understood, and no rhizobia proteins that interact with nsLTPs have been reported to date. In this study, we used a bacteria two-hybrid system and identified the high temperature protein G (HtpG) from Mesorhizobium huakuii that interacts with the nsLTP AsE246. The interaction between HtpG and AsE246 was confirmed by far-Western blotting and bimolecular fluorescence complementation. Our results indicated that the heat shock protein 90 (HSP90) domain of HtpG mediates the HtpG-AsE246 interaction. Immunofluorescence assay showed that HtpG was colocalized with AsE246 in infected nodule cells and symbiosome membranes. Expression of the htpG gene was relatively higher in young nodules and was highly expressed in the infection zones. Further investigation showed that htpG expression affects lipid abundance and profiles in root nodules and plays an essential role in nodule development and nitrogen fixation. Our findings provide further insights into the functional mechanisms behind the transport of symbiosome lipids via nsLTPs in root nodules.


Subject(s)
Astragalus Plant/microbiology , Bacterial Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Mesorhizobium/physiology , Nitrogen Fixation/physiology , Plant Proteins/metabolism , Astragalus Plant/metabolism , Bacterial Proteins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Gene Expression Regulation, Bacterial , HSP90 Heat-Shock Proteins/genetics , Mutation , Plant Proteins/genetics , Plants, Genetically Modified , Protein Domains , Protein Interaction Maps , Root Nodules, Plant/metabolism , Root Nodules, Plant/microbiology , Symbiosis , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/microbiology , Two-Hybrid System Techniques
16.
Wei Sheng Wu Xue Bao ; 57(1): 77-86, 2017 Jan 04.
Article in Chinese | MEDLINE | ID: mdl-29746762

ABSTRACT

Objective: We studied the functions and characteristics of hfq gene in Mesorhizobium huakuii 7653R in adverse environment and symbiotic with its host plant. Methods: The hfq mutant of 7653R was constructed via homologous recombination with small cloned fragments on suicide plasmids pK19mob to insert target gene. We applied 7653RΔhfq to characterize stress tolerance and symbiosis with host plant, in comparison with the complementary strains 7653R △hfq-C and the wild type. Results: Mutant 7653RΔhfq presented lower growth rate, and higher mortality after heat shock-pretreated than that of the wild type, as well as the decreasing adaptability under the stress of 4.5% ethanol and 50 mmol H2O2. The defection of hfq affected the expression of some sRNAs in 7653R. Moreover, the mutant displayed significant reduced nodulation ability and nitrogenase activity compared with the wild type. Conclusion: As a crucial post transcriptional regulatory factor, hfq plays an important role in Mesorhizobium Huakuii 7653R on both processes of stress resistance and symbiosis with the host plant Astragalus sinicus L.


Subject(s)
Bacterial Proteins/genetics , Host Factor 1 Protein/genetics , Mesorhizobium/metabolism , Astragalus Plant/microbiology , Astragalus Plant/physiology , Bacterial Proteins/metabolism , Host Factor 1 Protein/metabolism , Hydrogen Peroxide/pharmacology , Mesorhizobium/drug effects , Mesorhizobium/genetics , Mesorhizobium/growth & development , Plasmids/genetics , Plasmids/metabolism , Sequence Deletion
17.
Plant Mol Biol ; 88(6): 515-29, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26105827

ABSTRACT

The AsPPD1 gene from Astragalus sinicus encodes a purple acid phosphatase. To address the functions of AsPPD1 in legume-rhizobium symbiosis, its expression patterns, enzyme activity, subcellular localization, and phenotypes associated with its over-expression and RNA interference (RNAi) were investigated. The expression of AsPPD1 was up-regulated in roots and nodules after inoculation with rhizobia. Phosphate starvation reduced the levels of AsPPD1 transcripts in roots while increased those levels in nodules. We confirmed the acid phosphatase and phosphodiesterase activities of recombinant AsPPD1 purified from Pichia pastoris, and demonstrated its ability to hydrolyze ADP and ATP in vitro. Subcellular localization showed that AsPPD1 located on the plasma membranes in hairy roots and on the symbiosomes membranes in root nodules. Over-expression of AsPPD1 in hairy roots inhibited nodulation, while its silencing resulted in nodules early senescence and significantly decreased nitrogenase activity. Furthermore, HPLC measurement showed that AsPPD1 overexpression affects the ADP levels in the infected roots and nodules, AsPPD1 silencing affects the ratio of ATP/ADP and the energy charge in nodules, and quantitative observation demonstrated the changes of AsPPD1 transcripts level affected nodule primordia formation. Taken together, it is speculated that AsPPD1 contributes to symbiotic ADP levels and energy charge control, and this is required for effective nodule organogenesis and nitrogen fixation.


Subject(s)
Acid Phosphatase/metabolism , Astragalus Plant/enzymology , Astragalus Plant/metabolism , Gene Expression Regulation, Plant/physiology , Glycoproteins/metabolism , Nitrogen Fixation/physiology , Plant Root Nodulation/physiology , Acid Phosphatase/genetics , Amino Acid Sequence , Astragalus Plant/microbiology , Cloning, Molecular , DNA, Complementary , DNA, Plant , Gene Expression Regulation, Enzymologic , Gene Silencing , Glycoproteins/genetics , Mesorhizobium/physiology , Molecular Sequence Data , Mutation , Plant Roots/enzymology , Plant Roots/microbiology , Plant Roots/physiology , Time Factors , Up-Regulation/physiology
18.
BMC Genomics ; 15: 440, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24906389

ABSTRACT

BACKGROUND: Evidence based on genomic sequences is urgently needed to confirm the phylogenetic relationship between Mesorhizobium strain MAFF303099 and M. huakuii. To define underlying causes for the rather striking difference in host specificity between M. huakuii strain 7653R and MAFF303099, several probable determinants also require comparison at the genomic level. An improved understanding of mobile genetic elements that can be integrated into the main chromosomes of Mesorhizobium to form genomic islands would enrich our knowledge of how genome dynamics may contribute to Mesorhizobium evolution in general. RESULTS: In this study, we sequenced the complete genome of 7653R and compared it with five other Mesorhizobium genomes. Genomes of 7653R and MAFF303099 were found to share a large set of orthologs and, most importantly, a conserved chromosomal backbone and even larger perfectly conserved synteny blocks. We also identified candidate molecular differences responsible for the different host specificities of these two strains. Finally, we reconstructed an ancestral Mesorhizobium genomic island that has evolved into diverse forms in different Mesorhizobium species. CONCLUSIONS: Our ortholog and synteny analyses firmly establish MAFF303099 as a strain of M. huakuii. Differences in nodulation factors and secretion systems T3SS, T4SS, and T6SS may be responsible for the unique host specificities of 7653R and MAFF303099 strains. The plasmids of 7653R may have arisen by excision of the original genomic island from the 7653R chromosome.


Subject(s)
Genome, Bacterial , Mesorhizobium/genetics , Evolution, Molecular , Host Specificity , Mesorhizobium/classification , Mesorhizobium/physiology , Molecular Sequence Data , Phylogeny , Plant Physiological Phenomena , Plants/microbiology , Sequence Analysis, DNA , Symbiosis
19.
PLoS One ; 9(4): e93626, 2014.
Article in English | MEDLINE | ID: mdl-24695521

ABSTRACT

Mesorhizobium huakuii 7653R occurs either in nitrogen-fixing symbiosis with its host plant, Astragalus sinicus, or free-living in the soil. The M. huakuii 7653R genome has recently been sequenced. To better understand the complex biochemical and developmental changes that occur in 7653R during bacteroid development, RNA-Seq and Microarrays were used to investigate the differential transcriptomes of 7653R bacteroids and free-living cells. The two approaches identified several thousand differentially expressed genes. The most prominent up-regulation occurred in the symbiosis plasmids, meanwhile gene expression is concentrated to a set of genes (clusters) in bacteroids to fulfill corresponding functional requirements. The results suggested that the main energy metabolism is active while fatty acid metabolism is inactive in bacteroid and that most of genes relevant to cell cycle are down-regulated accordingly. For a global analysis, we reconstructed a protein-protein interaction (PPI) network for 7653R and integrated gene expression data into the network using Cytoscape. A highly inter-connected subnetwork, with function enrichment for nitrogen fixation, was found, and a set of hubs and previously uncharacterized genes participating in nitrogen fixation were identified. The results described here provide a broader biological landscape and novel insights that elucidate rhizobial bacteroid differentiation, nitrogen fixation and related novel gene functions.


Subject(s)
Mesorhizobium/genetics , Oligonucleotide Array Sequence Analysis , Sequence Analysis, RNA , Transcriptome , Genes, Bacterial
20.
Plant Physiol ; 164(2): 1045-58, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24367021

ABSTRACT

Rhizobia in legume root nodules fix nitrogen in symbiosomes, organelle-like structures in which a membrane from the host plant surrounds the symbiotic bacteria. However, the components that transport plant-synthesized lipids to the symbiosome membrane remain unknown. This study identified and functionally characterized the Chinese milk vetch (Astragalus sinicus) lipid transfer protein AsE246, which is specifically expressed in nodules. It was found that AsE246 can bind lipids in vitro. More importantly, AsE246 can bind the plant-synthesized membrane lipid digalactosyldiacylglycerol in vivo. Immunofluorescence and immunoelectron microscopy showed that AsE246 and digalactosyldiacylglycerol localize in the symbiosome membrane and are present in infection threads. Overexpression of AsE246 resulted in increased nodule numbers; knockdown of AsE246 resulted in reduced nodule numbers, decreased lipids contents in nodules, diminished nitrogen fixation activity, and abnormal development of symbiosomes. AsE246 knockdown also resulted in fewer infection threads, nodule primordia, and nodules, while AsE246 overexpression resulted in more infection threads and nodule primordia, suggesting that AsE246 affects nodule organogenesis associated with infection thread formation. Taken together, these results indicate that AsE246 contributes to lipids transport to the symbiosome membrane, and this transport is required for effective legume-rhizobium symbiosis.


Subject(s)
Astragalus Plant/metabolism , Carrier Proteins/metabolism , Lipid Metabolism , Organogenesis , Root Nodules, Plant/growth & development , Root Nodules, Plant/metabolism , Symbiosis , Astragalus Plant/microbiology , Astragalus Plant/ultrastructure , Biological Transport , Cell Membrane/metabolism , China , Diglycerides/metabolism , Gene Knockdown Techniques , Intracellular Membranes/metabolism , Membrane Lipids/metabolism , Organ Specificity , Phenotype , Phylogeny , Plant Root Nodulation , Protein Transport , RNA Interference , Rhizobium/physiology , Root Nodules, Plant/microbiology , Root Nodules, Plant/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...