Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Exp Dermatol ; 33(6): e15119, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881438

ABSTRACT

This manuscript presents a comprehensive investigation into the role of lactate metabolism-related genes as potential prognostic markers in skin cutaneous melanoma (SKCM). Bulk-transcriptome data from The Cancer Genome Atlas (TCGA) and GSE19234, GSE22153, and GSE65904 cohorts from GEO database were processed and harmonized to mitigate batch effects. Lactate metabolism scores were assigned to individual cells using the 'AUCell' package. Weighted Co-expression Network Analysis (WGCNA) was employed to identify gene modules correlated with lactate metabolism. Machine learning algorithms were applied to construct a prognostic model, and its performance was evaluated in multiple cohorts. Immune correlation, mutation analysis, and enrichment analysis were conducted to further characterize the prognostic model's biological implications. Finally, the function of key gene NDUFS7 was verified by cell experiments. Machine learning resulted in an optimal prognostic model, demonstrating significant prognostic value across various cohorts. In the different cohorts, the high-risk group showed a poor prognosis. Immune analysis indicated differences in immune cell infiltration and checkpoint gene expression between risk groups. Mutation analysis identified genes with high mutation loads in SKCM. Enrichment analysis unveiled enriched pathways and biological processes in high-risk SKCM patients. NDUFS7 was found to be a hub gene in the protein-protein interaction network. After the expression of NDUFS7 was reduced by siRNA knockdown, CCK-8, colony formation, transwell and wound healing tests showed that the activity, proliferation and migration of A375 and WM115 cell lines were significantly decreased. This study offers insights into the prognostic significance of lactate metabolism-related genes in SKCM.


Subject(s)
Lactic Acid , Machine Learning , Melanoma , Skin Neoplasms , Humans , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Melanoma/genetics , Melanoma/metabolism , Prognosis , Lactic Acid/metabolism , Single-Cell Analysis , Mutation , Transcriptome , Melanoma, Cutaneous Malignant , Cell Line, Tumor , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
2.
Exp Dermatol ; 33(4): e15070, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570935

ABSTRACT

Cutaneous melanoma poses a formidable challenge within the field of oncology, marked by its aggressive nature and capacity for metastasis. Despite extensive research uncovering numerous genetic and molecular contributors to cutaneous melanoma development, there remains a critical knowledge gap concerning the role of lipids, notably low-density lipoprotein (LDL), in this lethal skin cancer. This article endeavours to bridge this knowledge gap by delving into the intricate interplay between LDL metabolism and cutaneous melanoma, shedding light on how lipids influence tumour progression, immune responses and potential therapeutic avenues. Genes associated with LDL metabolism were extracted from the GSEA database. We acquired and analysed single-cell sequencing data (GSE215120) and bulk-RNA sequencing data, including the TCGA data set, GSE19234, GSE22153 and GSE65904. Our analysis unveiled the heterogeneity of LDL across various cell types at the single-cell sequencing level. Additionally, we constructed an LDL-related signature (LRS) using machine learning algorithms, incorporating differentially expressed genes and highly correlated genes. The LRS serves as a valuable tool for assessing the prognosis, immunity and mutation status of patients with cutaneous melanoma. Furthermore, we conducted experiments on A375 and WM-115 cells to validate the function of PPP2R1A, a pivotal gene within the LRS. Our comprehensive approach, combining advanced bioinformatics analyses with an extensive review of current literature, presents compelling evidence regarding the significance of LDL within the cutaneous melanoma microenvironment.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Skin Neoplasms/genetics , Prognosis , Algorithms , Machine Learning , Gene Expression Profiling , Lipids , Tumor Microenvironment/genetics
3.
Funct Integr Genomics ; 24(2): 72, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38594466

ABSTRACT

BACKGROUND: Colorectal cancer is a malignant tumor of the digestive system originating from abnormal cell proliferation in the colon or rectum, often leading to gastrointestinal symptoms and severe health issues. Nucleotide metabolism, which encompasses the synthesis of DNA and RNA, is a pivotal cellular biochemical process that significantly impacts both the progression and therapeutic strategies of colorectal cancer METHODS: For single-cell RNA sequencing (scRNA-seq), five functions were employed to calculate scores related to nucleotide metabolism. Cell developmental trajectory analysis and intercellular interaction analysis were utilized to explore the metabolic characteristics and communication patterns of different epithelial cells. These findings were further validated using spatial transcriptome RNA sequencing (stRNA-seq). A risk model was constructed using expression profile data from TCGA and GEO cohorts to optimize clinical decision-making. Key nucleotide metabolism-related genes (NMRGs) were functionally validated by further in vitro experiments. RESULTS: In both scRNA-seq and stRNA-seq, colorectal cancer (CRC) exhibited unique cellular heterogeneity, with myeloid cells and epithelial cells in tumor samples displaying higher nucleotide metabolism scores. Analysis of intercellular communication revealed enhanced signaling pathways and ligand-receptor interactions between epithelial cells with high nucleotide metabolism and fibroblasts. Spatial transcriptome sequencing confirmed elevated nucleotide metabolism states in the core region of tumor tissue. After identifying differentially expressed NMRGs in epithelial cells, a risk prognostic model based on four genes effectively predicted overall survival and immunotherapy outcomes in patients. High-risk group patients exhibited an immunosuppressive microenvironment and relatively poorer prognosis and responses to chemotherapy and immunotherapy. Finally, based on data analysis and a series of cellular functional experiments, ACOX1 and CPT2 were identified as novel therapeutic targets for CRC. CONCLUSION: In this study, a comprehensive analysis of NMRGs in CRC was conducted using a combination of single-cell sequencing, spatial transcriptome sequencing, and high-throughput data. The prognostic model constructed with NMRGs shows potential as a standalone prognostic marker for colorectal cancer patients and may significantly influence the development of personalized treatment approaches for CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Humans , RNA-Seq , Nucleotides , Single-Cell Gene Expression Analysis , Transcriptome , Metabolic Networks and Pathways , Colorectal Neoplasms/genetics , Tumor Microenvironment/genetics
4.
Cell Prolif ; : e13630, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38462759

ABSTRACT

Mesenchymal stem cell-derived exosomes (MSC-Exo) offer promising therapeutic potential for various refractory diseases, presenting a novel therapeutic strategy. However, their clinical application encounters several obstacles, including low natural secretion, uncontrolled biological functions and inherent heterogeneity. On the one hand, physical stimuli can mimic the microenvironment dynamics where MSC-Exo reside. These factors influence not only their secretion but also, significantly, their biological efficacy. Moreover, physical factors can also serve as techniques for engineering exosomes. Therefore, the realm of physical factors assumes a crucial role in modifying MSC-Exo, ultimately facilitating their clinical translation. This review focuses on the research progress in applying physical factors to MSC-Exo, encompassing ultrasound, electrical stimulation, light irradiation, intrinsic physical properties, ionizing radiation, magnetic field, mechanical forces and temperature. We also discuss the current status and potential of physical stimuli-affected MSC-Exo in clinical applications. Furthermore, we address the limitations of recent studies in this field. Based on this, this review provides novel insights to advance the refinement of MSC-Exo as a therapeutic approach in regenerative medicine.

5.
PLoS One ; 19(3): e0296437, 2024.
Article in English | MEDLINE | ID: mdl-38512878

ABSTRACT

Microbially induced calcium carbonate precipitation (MICP) is an environmentally friendly technology that improves soil permeability resistance through biocementation. In this study, 2D microscopic analysis and 3D volume reconstruction were performed on river sand after 24 cycles of bio-treatment based on stacked images and computed tomography (CT) scanning data, respectively, to extract biocementation patterns between particles. Based on the mutual validation findings of the two techniques, three patterns in the biocemented sand were identified as G-C-G, G-C, and G-G. Specifically, 2D microscopic analysis showed that G-C-G featured multi-particle encapsulation and bridging, with a pore filling ratio of 81.2%; G-C was characterized by locally coated particle layers, with a pore filling ratio of 19.7%; and the G-G was marked by sporadic filling of interparticle pores, with a pore filling ratio of 11.7%. G-C-G had the best cementation effect and permeability resistance (effective sealing rate of 68.5%), whereas G-C (effective sealing rate of 2.4%) had a relatively minor contribution to pore-filling and flow sealing. 3D volume reconstruction showed that G-C-G had the highest pore filling rate, followed by G-G and G-C. The average filling ratios of area and volume for G-C-G were 83.979% and 77.257%, respectively; for G-G 20.360% and 23.600%; and for G-C 11.545% and 11.250%. The analysis of the representative element volume (REV) was conducted, and the feasibility and reliability of the micro-scale pattern extraction results were confirmed to guide the analysis of macro-scale characteristics. The exploration of the effectiveness of cementation patterns in fluid sealing provides valuable insights into effective biocementation at the pore scale of porous media, which may inspire future research.


Subject(s)
Calcium Carbonate , Sand , Cementation , Reproducibility of Results , Tomography, X-Ray Computed , Chemical Precipitation
6.
Aging (Albany NY) ; 16(4): 3531-3553, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38358910

ABSTRACT

Despite the advent of precision therapy for breast cancer (BRCA) treatment, some individuals are still unable to benefit from it and have poor survival prospects as a result of the disease's high heterogeneity. Cell senescence plays a crucial role in the tumorigenesis, progression, and immune regulation of cancer and has a major impact on the tumor microenvironment. To find new treatment strategies, we aimed to investigate the potential significance of cell senescence in BRCA prognosis and immunotherapy. We created a 9-gene senescence-related signature. We evaluated the predictive power and the role of signatures in the immune microenvironment and infiltration. In vitro tests were used to validate the expression and function of the distinctive critical gene ACTC1. Our risk signature allows BRCA patients to receive a Predictive Risk Signature (PRS), which may be used to further categorize a patient's response to immunotherapy. Compared to conventional clinicopathological characteristics, PRS showed strong predictive efficacy and precise survival prediction. Moreover, PRS subgroups were examined for altered pathways, mutational patterns, and possibly useful medicines. Our research offers suggestions for incorporating senescence-based molecular classification into risk assessment and ICI therapy decision-making.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Immunotherapy , Breast , Carcinogenesis , Cell Transformation, Neoplastic , Tumor Microenvironment/genetics , Prognosis
7.
Environ Toxicol ; 39(5): 2545-2559, 2024 May.
Article in English | MEDLINE | ID: mdl-38189554

ABSTRACT

Programmed cell death plays a pivotal role in maintaining tissue homeostasis, and recent advancements in cell biology have uncovered PANoptosis-a novel paradigm integrating pyroptosis, apoptosis, and necroptosis. This study investigates the implications of PANoptosis in melanoma, a formidable skin cancer known for its metastatic potential and resistance to conventional therapies. Leveraging bulk and single-cell transcriptome analyses, machine learning modeling, and immune correlation assessments, we unveil the molecular intricacies of PANoptosis in melanoma. Single-cell sequencing identifies diverse cell types involved in PANoptosis, while bulk transcriptome analysis reveals key gene sets correlated with PANoptosis. Machine learning algorithms construct a robust prognostic model, demonstrating consistent predictive power across diverse cohorts. Patients with different cohorts can be divided into high-risk and low-risk groups according to this PANoptosis score, with the high-risk group having a significantly worse prognosis. Immune correlation analyses unveil a link between PANoptosis and immunotherapy response, with potential therapeutic implications. Mutation analysis and enrichment studies provide insights into the mutational landscape associated with PANoptosis. Finally, we used cell experiments to verify the expression and function of key gene PARVA, showing that PARVA was highly expressed in melanoma cell lines, and after PARVA is knocked down, cell invasion, migration, and colony formation ability were significantly decreased. This study advances our understanding of PANoptosis in melanoma, offering a comprehensive framework for targeted therapeutic interventions and personalized medicine strategies in combating this aggressive malignancy.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Gene Expression Profiling , Transcriptome , Skin Neoplasms/genetics , Apoptosis
8.
J Heart Lung Transplant ; 43(4): 604-614, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38065237

ABSTRACT

BACKGROUND: Gastrointestinal bleeding (GIB) results in frequent hospitalizations and impairs quality of life in durable left ventricular assist device (LVAD) recipients. Anticipation of these events before implantation could have important implications for patient selection and management. METHODS: The study population included all adult HeartMate 3 (HM3) primary LVAD recipients enrolled in the STS Intermacs registry from January 2017 to December 2020. Using multivariable modeling methodologies, we investigated the relationships between preimplantation characteristics and postimplant bleeding, bleeding and death, and additional bleeding episodes on subsequent bleeding episodes and created a risk score to predict the likelihood of post-LVAD GIB based solely on preimplantation factors. RESULTS: Of 6,425 patients who received an HM3 LVAD, 1,010 (15.7%) patients experienced GIB. Thirteen preimplantation factors were independent predictors of post-LVAD GIB. A risk score was created from these factors and calculated for each patient. By 3 years postimplant, GIB occurred in 11%, 26%, and 43% of low-, medium- and high-risk patients, respectively. Experiencing 1 post-LVAD GIB event was associated with an increased risk for further GIB events, with 33.9% of patients experiencing at least 1 recurrence. While post-LVAD GIB was associated with mortality, there was no relationship between number of GIB events and death. CONCLUSIONS: The Michigan Bleeding Risk Model is a simple tool, which facilitates the prediction of post-LVAD GIB in HM3 recipients using 13 preimplant variables. The implementation of this tool may help in the risk stratification process and may have therapeutic and clinical implications in HM3 LVAD recipients.


Subject(s)
Heart Failure , Heart-Assist Devices , Adult , Humans , Heart Failure/surgery , Michigan/epidemiology , Heart-Assist Devices/adverse effects , Quality of Life , Retrospective Studies , Gastrointestinal Hemorrhage/epidemiology , Gastrointestinal Hemorrhage/etiology
9.
Methods Mol Biol ; 2746: 213-224, 2024.
Article in English | MEDLINE | ID: mdl-38070092

ABSTRACT

Due to the highly conserved genetics across the central nervous system, the easily probed visual system can act as an endophenotype for assessing neurological function. Here, we describe a psychophysics approach to assess visually driven swimming behavior in the high-throughput zebrafish genetic model system. We use the optomotor response test together with general locomotion behavior to assess neural processing while excluding motor defects related to muscle function.


Subject(s)
Endophenotypes , Zebrafish , Animals , Zebrafish/genetics , Larva/genetics , Locomotion , Swimming/physiology
10.
World J Clin Cases ; 11(34): 8094-8098, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38130783

ABSTRACT

Keloids, which are abnormal manifestations of wound healing, can result in significant functional impairment and aesthetic deformities. The pathogenesis of keloids is multifaceted and complex and influenced by various factors, such as genetics, the environment, and immune responses. The evolution of keloid treatment has progressed from traditional surgical excision to a contemporary combination of therapies including injection and radiation treatments, among others. This article provides a comprehensive review of keloid pathogenesis and treatment, emphasizing the latest advances in the field. Ultimately, this review underscores the necessity for continued research to enhance our understanding of keloid pathogenesis and to devise more effective treatments for this challenging condition.

11.
Front Genet ; 14: 1232325, 2023.
Article in English | MEDLINE | ID: mdl-37953919

ABSTRACT

An unique subclass of functional non-coding RNAs generated by transfer RNA (tRNA) under stress circumstances is known as tRNA-derived small RNA (tsRNA). tsRNAs can be divided into tRNA halves and tRNA-derived fragments (tRFs) based on the different cleavage sites. Like microRNAs, tsRNAs can attach to Argonaute (AGO) proteins to target downstream mRNA in a base pairing manner, which plays a role in rRNA processing, gene silencing, protein expression and viral infection. Notably, tsRNAs can also directly bind to protein and exhibit functions in transcription, protein modification, gene expression, protein stabilization, and signaling pathways. tsRNAs can control the expression of tumor suppressor genes and participate in the initiation of cancer. It can also mediate the progression of diseases by regulating cell viability, migration ability, inflammatory factor content and autophagy ability. Precision medicine targeting tsRNAs and drug therapy of plant-derived tsRNAs are expected to be used in clinical practice. In addition, liquid biopsy technology based on tsRNAs indicates a new direction for the non-invasive diagnosis of diseases.

12.
BMC Med Genomics ; 16(1): 248, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853449

ABSTRACT

BACKGROUND: Efferocytosis is a biological process in which phagocytes remove apoptotic cells and vesicles from tissues. This process is initiated by the release of inflammatory mediators from apoptotic cells and plays a crucial role in resolving inflammation. The signals associated with efferocytosis have been found to regulate the inflammatory response and the tumor microenvironment (TME), which promotes the immune escape of tumor cells. However, the role of efferocytosis in glioblastoma multiforme (GBM) is not well understood and requires further investigation. METHODS: In this study, we conducted a comprehensive analysis of 22 efferocytosis-related genes (ERGs) by searching for studies related to efferocytosis. Using bulk RNA-Seq and single-cell sequencing data, we analyzed the expression and mutational characteristics of these ERGs. By using an unsupervised clustering algorithm, we obtained ERG clusters from 549 GBM patients and evaluated the immune infiltration characteristics of each cluster. We then identified differential genes (DEGs) in the two ERG clusters and classified GBM patients into different gene clusters using univariate cox analysis and unsupervised clustering algorithms. Finally, we utilized the Boruta algorithm to screen for prognostic genes and reduce dimensionality, and the PCA algorithm was applied to create a novel efferocytosis-related scoring system. RESULTS: Differential expression of ERGs in glioma cell lines and normal cells was analyzed by rt-PCR. Cell function experiments, on the other hand, validated TIMD4 as a tumor risk factor in GBM. We found that different ERG clusters and gene clusters have distinct prognostic and immune infiltration profiles. The ERG signature we developed provides insight into the tumor microenvironment of GBM. Patients with lower ERG scores have a better survival rate and a higher likelihood of benefiting from immunotherapy. CONCLUSIONS: Our novel efferocytosis-related signature has the potential to be used in clinical practice for risk stratification of GBM patients and for selecting individuals who are likely to respond to immunotherapy. This can help clinicians design appropriate targeted therapies before initiating clinical treatment.


Subject(s)
Glioblastoma , Glioma , Humans , Glioblastoma/genetics , Prognosis , Phagocytosis , Inflammation , Tumor Microenvironment
13.
Channels (Austin) ; 17(1): 2273247, 2023 12.
Article in English | MEDLINE | ID: mdl-37905302

ABSTRACT

Breast cancer is currently the most prevalent form of cancer worldwide. Nevertheless, there remains limited clarity regarding our understanding of the tumor microenvironment and metabolic characteristics associated with it. ATP-binding cassette (ABC) transporters are the predominant transmembrane transporters found in organisms. Therefore, it is essential to investigate the role of ABC transporters in breast cancer. Transcriptome data from breast cancer patients were downloaded from the TCGA database. ABC transporter-related genes were obtained from the Genecards database. By LASSO regression, ABC-associated prognostic signature was constructed in breast cancer. Subsequently, immune microenvironment analysis was performed. Finally, cell experiments were performed to verify the function of ABCB7 in the breast cancer cell lines MDA-MB-231 and MCF-7. Using the ABC transporter-associated signature, we calculated a risk score for each breast cancer patient. Patients with breast cancer were subsequently categorized into high-risk and low-risk groups, utilizing the median risk score as the threshold. Notably, patients in the high-risk group exhibited significantly worse prognosis (P<0.05). Additionally, differences were observed in terms of immune cell infiltration levels, immune correlations, and gene expression of immune checkpoints between the two groups. Functional experiments conducted on breast cancer cell lines MDA-MB-231 and MCF-7 demonstrated that ABCB7 knockdown significantly diminished cell activity, proliferation, invasion, and migration. These findings emphasize the significance of understanding ABC transporter-mediated metabolic and transport characteristics in breast cancer, offering promising directions for further research and potential therapeutic interventions.


Subject(s)
ATP-Binding Cassette Transporters , Breast Neoplasms , Humans , Female , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/therapeutic use , Breast Neoplasms/genetics , Cell Line, Tumor , Prognosis , Adenosine Triphosphate , Tumor Microenvironment
14.
Front Immunol ; 14: 1263329, 2023.
Article in English | MEDLINE | ID: mdl-37727789

ABSTRACT

Background: Glioblastoma (GBM) is a malignant primary brain tumor. This study focused on exploring the exosome-related features of glioblastoma to better understand its cellular composition and molecular characteristics. Methods: Single-cell RNA sequencing (scRNA-seq) and spatial transcriptome RNA sequencing (stRNA-seq) were used to analyze the heterogeneity of glioblastomas. After data integration, cell clustering, and annotation, five algorithms were used to calculate scores for exosome-related genes(ERGs). Cell trajectory analysis and intercellular communication analysis were performed to explore exosome-related communication patterns. Spatial transcriptome sequencing data were analyzed to validate the findings. To further utilize exosome-related features to aid in clinical decision-making, a prognostic model was constructed using GBM's bulk RNA-seq. Results: Different cell subpopulations were observed in GBM, with Monocytes/macrophages and malignant cells in tumor samples showing higher exosome-related scores. After identifying differentially expressed ERGs in malignant cells, pseudotime analysis revealed the cellular status of malignant cells during development. Intercellular communication analysis highlighted signaling pathways and ligand-receptor interactions. Spatial transcriptome sequencing confirmed the high expression of exosome-related gene features in the tumor core region. A prognostic model based on six ERGs was shown to be predictive of overall survival and immunotherapy outcome in GBM patients. Finally, based on the results of scRNA-seq and prognostic modeling as well as a series of cell function experiments, BARD1 was identified as a novel target for the treatment of GBM. Conclusion: This study provides a comprehensive understanding of the exosome-related features of GBM in both scRNA-seq and stRNA-seq, with malignant cells with higher exosome-related scores exhibiting stronger communication with Monocytes/macrophages. In terms of spatial data, highly scored malignant cells were also concentrated in the tumor core region. In bulk RNA-seq, patients with a high exosome-related index exhibited an immunosuppressive microenvironment, which was accompanied by a worse prognosis as well as immunotherapy outcomes. Prognostic models constructed using ERGs are expected to be independent prognostic indicators for GBM patients, with potential implications for personalized treatment strategies for GBM. Knockdown of BARD1 in GBM cell lines reduces the invasive and value-added capacity of tumor cells, and thus BARD1-positively expressing malignant cells are a risk factor for GBM patients.


Subject(s)
Exosomes , Glioblastoma , MicroRNAs , Humans , Prognosis , Glioblastoma/genetics , Exosomes/genetics , Transcriptome , Tumor Microenvironment/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases
15.
Orphanet J Rare Dis ; 18(1): 174, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37400835

ABSTRACT

BACKGROUND: At present, the etiology of moyamoya disease is not clear, and it is necessary to explore the mechanism of its occurrence and development. Although some bulk sequencing data have previously revealed transcriptomic changes in Moyamoya disease, single-cell sequencing data has been lacking. METHODS: Two DSA(Digital Subtraction Angiography)-diagnosed patients with moyamoya disease were recruited between January 2021 and December 2021. Their peripheral blood samples were single-cell sequenced. CellRanger(10 x Genomics, version 3.0.1) was used to process the raw data, demultiplex cellular barcodes, map reads to the transcriptome, and dowm-sample reads(as required to generate normalized aggregate data across samples). There were 4 normal control samples, including two normal samples GSM5160432 and GSM5160434 of GSE168732, and two normal samples of GSE155698, namely GSM4710726 and GSM4710727. Weighted co-expression network analysis was used to explore the gene sets associated with moyamoya disease. GO analysis and KEGG analysis were used to explore gene enrichment pathways. Pseudo-time series analysis and cell interaction analysis were used to explore cell differentiation and cell interaction. RESULTS: For the first time, we present a peripheral blood single cell sequencing landscape of Moyamoya disease, revealing cellular heterogeneity and gene expression heterogeneity. In addition, by combining with WGCNA analysis in public database and taking intersection, the key genes in moyamoya disease were obtained. namely PTP4A1, SPINT2, CSTB, PLA2G16, GPX1, HN1, LGALS3BP, IFI6, NDRG1, GOLGA2, LGALS3. Moreover, pseudo-time series analysis and cell interaction analysis revealed the differentiation of immune cells and the relationship between immune cells in Moyamoya disease. CONCLUSIONS: Our study can provide information for the diagnosis and treatment of moyamoya disease.


Subject(s)
Moyamoya Disease , Humans , Moyamoya Disease/genetics , Moyamoya Disease/diagnosis , Gene Expression Profiling , Angiography, Digital Subtraction , Transcriptome , Membrane Glycoproteins
16.
Front Cell Infect Microbiol ; 13: 1207235, 2023.
Article in English | MEDLINE | ID: mdl-37325512

ABSTRACT

Background: Combining immunotherapy with surgical intervention is a prevailing and radical therapeutic strategy for individuals afflicted with gastric carcinoma; nonetheless, certain patients exhibit unfavorable prognoses even subsequent to this treatment regimen. This research endeavors to devise a machine learning algorithm to recognize risk factors with a high probability of inducing mortality among patients diagnosed with gastric cancer, both prior to and during their course of treatment. Methods: Within the purview of this investigation, a cohort of 1015 individuals with gastric cancer were incorporated, and 39 variables encompassing diverse features were recorded. To construct the models, we employed three distinct machine learning algorithms, specifically extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor algorithm (KNN). The models were subjected to internal validation through employment of the k-fold cross-validation technique, and subsequently, an external dataset was utilized to externally validate the models. Results: In comparison to other machine learning algorithms employed, the XGBoost algorithm demonstrated superior predictive capacity regarding the risk factors that affect mortality after combination therapy in gastric cancer patients for a duration of one year, three years, and five years posttreatment. The common risk factors that significantly impacted patient survival during the aforementioned time intervals were identified as advanced age, tumor invasion, tumor lymph node metastasis, tumor peripheral nerve invasion (PNI), multiple tumors, tumor size, carcinoembryonic antigen (CEA) level, carbohydrate antigen 125 (CA125) level, carbohydrate antigen 72-4 (CA72-4) level, and H. pylori infection. Conclusion: The XGBoost algorithm can assist clinicians in identifying pivotal prognostic factors that are of clinical significance and can contribute toward individualized patient monitoring and management.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/surgery , Retrospective Studies , Biomarkers, Tumor , Risk Factors , Immunotherapy
17.
Oncol Res ; 31(3): 389-403, 2023.
Article in English | MEDLINE | ID: mdl-37305390

ABSTRACT

Purpose: To screen potential tumor antigens for melanoma vaccine development and identify different immune subtypes. Methods: Transcriptional data (HTSEQ-FPKM) and clinical information of a 472 Melanoma cohort GDC TCGA Melanoma (SKCM) were downloaded from the UCSC XENA website (http://xena.ucsc.edu/). Subsequently, transcriptome data and clinical information of 210 melanoma cohort GSE65904 were downloaded from Gene Expression Omnibus (GEO), a large global public database. All the transcriptome expression data matrices were log2 transformed for subsequent analysis. GEPIA, TIMER, and IMMPORT databases are also used for analysis. Cell function experiments were performed to validate the role of the IDO1 gene in melanoma cell line A375. Results: Our study provides potential tumor antigens for vaccine development in melanoma patients: GZMB, GBP4, CD79A, APOBEC3F, IDO1, JCHAIN, LAG3, PLA2G2D, XCL2. In addition, we divide melanoma patients into two immune subtypes that have significant differences in tumor immunity and may have different responses to vaccination. In view of the unclear role of IDO1 in melanoma, we selected IDO1 for cell assay validation. Cell function assay showed that IDO1 was significantly overexpressed in the melanoma A375 cell line. After IDO1 knockdown, the activity, invasion, migration and healing ability of A375 cell lines were significantly decreased. Conclusion: Our study could provide a reference for the development of vaccines for melanoma patients.


Subject(s)
Melanoma , Humans , Melanoma/genetics , Gene Expression Profiling , Transcriptome , Cell Line , Antigens, Neoplasm/genetics
18.
Aging (Albany NY) ; 15(12): 5592-5610, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37338518

ABSTRACT

Currently, the role of liquid-liquid phase separation (LLPS) in cancer has been preliminarily explained. However, the significance of LLPS in breast cancer is unclear. In this study, single cell sequencing datasets GSE188600 and GSE198745 for breast cancer were downloaded from the GEO database. Transcriptome sequencing data for breast cancer were downloaded from UCSC database. We divided breast cancer cells into high-LLPS group and low-LLPS group by down dimension clustering analysis of single-cell sequencing data set, and obtained differentially expressed genes between the two groups. Subsequently, weighted co-expression network analysis (WGCNA) was performed on transcriptome sequencing data, and the module genes most associated with LLPS were obtained. COX regression and Lasso regression were performed and the prognostic model was constructed. Subsequently, survival analysis, principal component analysis, clinical correlation analysis, and nomogram construction were used to evaluate the significance of the prognostic model. Finally, cell experiments were used to verify the function of the model's key gene, PGAM1. We constructed a LLPS-related prognosis model consisting of nine genes: POLR3GL, PLAT, NDRG1, HMGB3, HSPH1, PSMD7, PDCD2, NONO and PGAM1. By calculating LLPS-related risk scores, breast cancer patients could be divided into high-risk and low-risk groups, with the high-risk group having a significantly worse prognosis. Cell experiments showed that the activity, proliferation, invasion and healing ability of breast cancer cell lines were significantly decreased after knockdown of the key gene PGAM1 in the model. Our study provides a new idea for prognostic stratification of breast cancer and provides a novel marker: PGAM1.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Multiomics , Transcription Factors , Cluster Analysis , Databases, Factual , Prognosis , Apoptosis Regulatory Proteins
19.
Front Pharmacol ; 14: 1192777, 2023.
Article in English | MEDLINE | ID: mdl-37284314

ABSTRACT

The phenomenon of T Cell exhaustion (TEX) entails a progressive deterioration in the functionality of T cells within the immune system during prolonged conflicts with chronic infections or tumors. In the context of ovarian cancer immunotherapy, the development, and outcome of treatment are closely linked to T-cell exhaustion. Hence, gaining an in-depth understanding of the features of TEX within the immune microenvironment of ovarian cancer is of paramount importance for the management of OC patients. To this end, we leveraged single-cell RNA data from OC to perform clustering and identify T-cell marker genes utilizing the Unified Modal Approximation and Projection (UMAP) approach. Through GSVA and WGCNA in bulk RNA-seq data, we identified 185 TEX-related genes (TEXRGs). Subsequently, we transformed ten machine learning algorithms into 80 combinations and selected the most optimal one to construct TEX-related prognostic features (TEXRPS) based on the mean C-index of the three OC cohorts. In addition, we explored the disparities in clinicopathological features, mutational status, immune cell infiltration, and immunotherapy efficacy between the high-risk (HR) and low-risk (LR) groups. Upon the integration of clinicopathological features, TEXRPS displayed robust predictive power. Notably, patients in the LR group exhibited a superior prognosis, higher tumor mutational load (TMB), greater immune cell infiltration abundance, and enhanced sensitivity to immunotherapy. Lastly, we verified the differential expression of the model gene CD44 using qRT-PCR. In conclusion, our study offers a valuable tool to guide clinical management and targeted therapy of OC.

SELECTION OF CITATIONS
SEARCH DETAIL
...