Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 340, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575872

ABSTRACT

BACKGROUND: The popularity of Muscovy ducks is attributed not only to their conformation traits but also to their slightly higher content of breast and leg meat, as well as their stronger-tasting meat compared to that of typical domestic ducks. However, there is a lack of comprehensive systematic research on the development of breast muscle in Muscovy ducks. In addition, since the number of skeletal muscle myofibers is established during the embryonic period, this study conducted a full-length transcriptome sequencing and microRNA sequencing of the breast muscle. Muscovy ducks at four developmental stages, namely Embryonic Day 21 (E21), Embryonic Day 27 (E27), Hatching Day (D0), and Post-hatching Day 7 (D7), were used to isolate total RNA for analysis. RESULTS: A total of 68,161 genes and 472 mature microRNAs were identified. In order to uncover deeper insights into the regulation of mRNA by miRNAs, we conducted an integration of the differentially expressed miRNAs (known as DEMs) with the differentially expressed genes (referred to as DEGs) across various developmental stages. This integration allowed us to make predictions regarding the interactions between miRNAs and mRNA. Through this analysis, we identified a total of 274 DEGs that may serve as potential targets for the 68 DEMs. In the predicted miRNA‒mRNA interaction networks, let-7b, miR-133a-3p, miR-301a-3p, and miR-338-3p were the hub miRNAs. In addition, multiple DEMs also showed predicted target relationships with the DEGs associated with skeletal system development. These identified DEGs and DEMs as well as their predicted interaction networks involved in the regulation of energy homeostasis and muscle development were most likely to play critical roles in facilitating the embryo-to-hatchling transition. A candidate miRNA, miR-301a-3p, exhibited increased expression during the differentiation of satellite cells and was downregulated in the breast muscle tissues of Muscovy ducks at E21 compared to E27. A dual-luciferase reporter assay suggested that the ANKRD1 gene, which encodes a transcription factor, is a direct target of miR-301a-3p. CONCLUSIONS: miR-301a-3p suppressed the posttranscriptional activity of ANKRD1, which is an activator of satellite cell proliferation, as determined with gain- and loss-of-function experiments. miR-301a-3p functions as an inducer of myogenesis by targeting the ANKRD1 gene in Muscovy ducks. These results provide novel insights into the early developmental process of black Muscovy breast muscles and will improve understanding of the underlying molecular mechanisms.


Subject(s)
MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Ducks/genetics , Ducks/metabolism , Gene Expression Profiling , Muscle, Skeletal/metabolism , RNA, Messenger/genetics , Transcriptome
2.
Front Nutr ; 10: 1279141, 2023.
Article in English | MEDLINE | ID: mdl-37899822

ABSTRACT

Chinese indigenous chickens have a long history of natural and artificial selection and are popular for their excellent meat quality and unique flavor. This study investigated six meat quality-related traits in Ningdu yellow, Baier yellow, Kangle, and Shengze 901 chickens. Two-dimensional gas chromatography-time-of-flight mass spectrometry was used to detect unique flavors in 24 breast muscle samples from the same phenotyped chickens. Overall, 685, 618, 502, and 487 volatile organic compounds were identified in Ningdu yellow, Baier yellow, Kangle, and Shengze 901 chickens, respectively. The flavor components were separated into eight categories, including hydrocarbons and aldehydes. Multivariate analyses of the identified flavor components revealed some outstanding features of these breeds. For example, the hydrocarbons (22.09%) and aldehydes (14.76%) were higher in Ningdu yellow chickens and the highest content of N, N-dimethyl-methylamine was in Ningdu yellow, Baier yellow, and Shengze 901 chickens, indicating the maximum attribution to the overall flavor (ROAV = 439.57, 289.21, and 422.80). Furthermore, we found that 27 flavor compounds differed significantly among the four Chinese breeds, including 20 (e.g., 1-octen-3-ol), two (e.g., 2-methyl-naphthalene), four (e.g., 2,6-lutidine), and one (benzophenone) flavor components were showed significant enrichment in Ningdu yellow, Baier yellow, Kangle, and Shengze 901 chickens, respectively. The flavor components enriched in each breed were key biomarkers distinguishing breeds and most were significantly correlated with meat quality trait phenotypes. These results provide novel insights into indigenous Chinese chicken meat flavors.

3.
Sensors (Basel) ; 23(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37896605

ABSTRACT

Pathological conditions in diabetic feet cause surface temperature variations, which can be captured quantitatively using infrared thermography. Thermal images captured during recovery of diabetic feet after active cooling may reveal richer information than those from passive thermography, but diseased foot regions may exhibit very small temperature differences compared with the surrounding area, complicating plantar foot segmentation in such cold-stressed active thermography. In this study, we investigate new plantar foot segmentation methods for thermal images obtained via cold-stressed active thermography without the complementary information from color or depth channels. To better deal with the temporal variations in thermal image contrast when planar feet are recovering from cold immersion, we propose an image pre-processing method using a two-stage adaptive gamma transform to alleviate the impact of such contrast variations. To improve upon existing deep neural networks for segmenting planar feet from cold-stressed infrared thermograms, a new deep neural network, the Plantar Foot Segmentation Network (PFSNet), is proposed to better extract foot contours. It combines the fundamental U-shaped network structure, a multi-scale feature extraction module, and a convolutional block attention module with a feature fusion network. The PFSNet, in combination with the two-stage adaptive gamma transform, outperforms multiple existing deep neural networks in plantar foot segmentation for single-channel infrared images from cold-stressed infrared thermography, achieving an accuracy of 97.3% and 95.4% as measured by Intersection over Union (IOU) and Dice Similarity Coefficient (DSC) respectively.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Humans , Diabetic Foot/diagnostic imaging , Thermography/methods , Neural Networks, Computer , Foot/diagnostic imaging , Image Processing, Computer-Assisted/methods
4.
Front Microbiol ; 14: 1168924, 2023.
Article in English | MEDLINE | ID: mdl-37396394

ABSTRACT

Introduction: The incidence of pediatric inflammatory bowel disease (PIBD) continues to rise. It was reported that the probiotic lactic acid bacteria Pediococcus pentosaceus (P. pentosaceus) can interfere with intestinal immunity, but it is still unknown whether it can alleviate PIBD and the concrete mechanism of immune regulation is unclear. Methods: For this study, 3-week-old juvenile mice were selected for modeling the development of PIBD. The mice treated with 2% DSS were randomly divided into two groups, which were given P. pentosaceus CECT8330 and equal amounts of solvent, respectively. The feces and intestinal tissue were collected for the mechanism exploration in vivo. THP-1 and NCM460 cells were used to investigate the effects of P. pentosaceus CECT8330 on macrophage polarization, epithelial cell apoptosis, and their crosstalk in vitro. Results: P. pentosaceus CECT8330 obviously alleviated colitis symptoms of juvenile mice, including weight loss, colon length shortening, spleen swelling, and intestinal barrier function. Mechanistically, P. pentosaceus CECT8330 could inhibit intestinal epithelial apoptosis by suppressing the NF-κB signaling pathway. Meanwhile, it reprogramed macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype, leading to a decreased secretion of IL-1ß which contributes to the reduction in ROS production and epithelial apoptosis. Additionally, the 16S rRNA sequence analysis revealed that P. pentosaceus CECT8330 could recover the balance of gut microbiota, and a significantly increased content of Akkermansia muciniphila was particularly observed. Conclusion: P. pentosaceus CECT8330 shifts macrophage polarization toward an anti-inflammatory M2 phenotype. The decreased production of IL-1ß leads to a reduction in ROS, NF-κB activation, and apoptosis in the intestinal epithelium, all of which help to repair the intestinal barrier and adjust gut microbiota in juvenile colitis mice.

5.
Poult Sci ; 102(8): 102753, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37267641

ABSTRACT

Here, we examined the effects of crossbreeding and sex on growth performance, slaughter performance, and meat quality in Xingguo gray (XG) goose, using transcriptomic and metabolomic techniques. The experiment was conducted using 400 goslings (1-day old) of 2 genotypes: the XG breed and its ternary hybrids [F2 geese; (XG Goose♂ × Yangzhou Goose♀)♀ × Shitou Goose♂]. The goslings were divided into 4 groups: female XG, male XG, female F2 geese, and male F2 geese, and growth parameters were examined at 70 d of age, using 30 birds from each group. Following slaughter, samples of breast and thigh muscles were collected from each group for chemical, metabolome, and transcriptome analyses. Growth rate, live body and slaughter weights, meat chemical composition, and muscle fiber diameter were affected by crossbreeding and sex. Crossbreeding significantly improved the dressing percentage, semieviscerated rate, eviscerated yield, and abdominal fat yield of XG geese. To clarify the potential regulatory network affected by crossbreeding and sex, we used RNA-seq and nontargeted metabolomics to detect changes in male and female goose breast muscle. The transcriptome results showed that there were 534, 323, 297, and 492 differently expressed genes (DEGs) among the 4 comparison groups (XG-Female vs. F2-Female, XG-Male vs. F2-Male, F2-Male vs. F2-Female, and XG-Male vs. XG-Female, respectively) that were mainly related to muscle growth and development and fatty acid metabolism pathways. A total of 141 significantly differentially accumulated metabolites (DAMs) were enriched in serine and threonine, propionate, and pyruvate metabolism. Finally, we comprehensively analyzed the metabolome and transcriptome data and found that many DEGs and DAMs played crucial roles in lipid metabolism and muscle growth and development. In summary, crossbreeding can improve XG goose production performance and affect breast muscle gene expression and metabolites in both female and male geese.


Subject(s)
Geese , Multiomics , Female , Animals , Male , Geese/physiology , Chickens , Meat/analysis , Hybridization, Genetic
6.
J Transl Med ; 21(1): 203, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932401

ABSTRACT

BACKGROUND: The incidence of pediatric inflammatory bowel disease (PIBD) has been steadily increasing globally. Delayed diagnosis of PIBD increases the risk of complications and contributes to growth retardation. To improve long-term outcomes, there is a pressing need to identify novel markers for early diagnosis of PIBD. METHODS: The candidate biomarkers for PIBD were identified from the GSE117993 dataset by two machine learning algorithms, namely LASSO and mSVM-RFE, and externally validated in the GSE126124 dataset and our PIBD cohort. The role of ficolin-1 (FCN1) in PIBD and its association with macrophage infiltration was investigated using the CIBERSORT method and enrichment analysis of the single-cell dataset GSE121380, and further validated using immunoblotting, qRT-PCR, and immunostaining in colon biopsies from PIBD patients, a juvenile murine DSS-induced colitis model, and THP-1-derived macrophages. RESULTS: FCN1 showed great diagnostic performance for PIBD in an independent clinical cohort with the AUC of 0.986. FCN1 expression was upregulated in both colorectal biopsies and blood samples from PIBD patients. Functionally, FCN1 was associated with immune-related processes in the colonic mucosa of PIBD patients, and correlated with increased proinflammatory M1 macrophage infiltration. Furthermore, single-cell transcriptome analysis and immunostaining revealed that FCN1 was almost exclusively expressed in macrophages infiltrating the colonic mucosa of PIBD patients, and these FCN1+ macrophages were related to hyper-inflammation. Notably, proinflammatory M1 macrophages derived from THP-1 expressed high levels of FCN1 and IL-1ß, and FCN1 overexpression in THP-1-derived macrophages strongly promoted LPS-induced activation of the proinflammatory cytokine IL-1ß via the NLRP3-caspase-1 axis. CONCLUSIONS: FCN1 is a novel and promising diagnostic biomarker for PIBD. FCN1+ macrophages enriched in the colonic mucosa of PIBD exhibit proinflammatory phenotypes, and FCN1 promotes IL-1ß maturation in macrophages via the NLRP3-caspase-1 axis.


Subject(s)
Inflammatory Bowel Diseases , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/pathology , Macrophages/metabolism , Caspase 1/metabolism , Biomarkers/metabolism
7.
Front Plant Sci ; 13: 841693, 2022.
Article in English | MEDLINE | ID: mdl-35693186

ABSTRACT

Sugarcane (Saccharum spp.) is an efficient crop mainly used for sugar and bioethanol production. High yield and high sucrose of sugarcane are always the fundamental demands in sugarcane growth worldwide. Leaf angle and size of sugarcane can be attributed to planting density, which was associated with yield. In this study, we performed genome-wide association studies (GWAS) with a panel of 216 sugarcane core parents and their derived lines (natural population) to determine the genetic basis of leaf angle and key candidate genes with +2, +3, and +4 leaf at the seedling, elongation, and mature stages. A total of 288 significantly associated loci of sugarcane leaf angle at different developmental stages (eight phenotypes) were identified by GWAS with 4,027,298 high-quality SNP markers. Among them, one key locus and 11 loci were identified in all three stages and two stages, respectively. An InDel marker (SNP Ss6A_102766953) linked to narrow leaf angle was obtained. Overall, 4,089 genes were located in the confidence interval of significant loci, among which 3,892 genes were functionally annotated. Finally, 13 core parents and their derivatives tagged with SNPs were selected for marker-assisted selection (MAS). These candidate genes are mainly related to MYB transcription factors, auxin response factors, serine/threonine protein kinases, etc. They are directly or indirectly associated with leaf angle in sugarcane. This research provided a large number of novel genetic resources for the improvement of leaf angles and simultaneously to high yield and high bioethanol production.

8.
J Anim Breed Genet ; 138(1): 122-134, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32378263

ABSTRACT

Back and thigh skin of chickens showed significant differences in the thickness and the feather follicle density and size, which are important traits for slaughtered chickens' appearance. In the present study, global gene expression profiling was conducted in the back and thigh skin of chickens using Microarray technology. The results showed that 676 genes were differentially expressed between back and thigh skin. The expression of the differentially expressed genes (DEGs), including PPP1R3C, IGF1, PTCHD1, HOXB6, FGF9, CAMK4, SHH, BMP8B, FOXN1 and PTGER2, was validated by real-time quantitative polymerase chain reaction (RT-qPCR), and the results were consistent with microarray results. Functional analysis revealed that the DEGs were significantly involved in cell proliferation, differentiation, apoptosis, adhesion and transport process, and the pathways were significantly mapped into the ECM-receptor interaction, peroxisome, focal adhesion, Hedgehog and PPAR signalling pathways. Protein-protein interaction network analysis suggested that signalling pathways related to feathers morphogenesis and development, such as Wnt, FGF, MAPK, SHH and BMP signalling pathways, occupied important positions in the network. Genes involved in these signalling pathways and adhesion molecules might play a vital role in skin and feather follicle development. Further single nucleotide polymorphism (SNP) association analysis of Wnt3A showed that the AC genotype of SNP g.255361 C>A significantly increased the feather follicle density of thigh skin. Our findings may provide new insights on candidate genes and pathways related to skin and feather follicle formation of chickens.


Subject(s)
Chickens , Feathers , Animals , Chickens/genetics , Gene Expression Profiling/veterinary , Morphogenesis , Skin
9.
Anim Sci J ; 80(4): 372-80, 2009 Aug.
Article in English | MEDLINE | ID: mdl-20163596

ABSTRACT

As the fast pace of genomic research continues to identify mitochondrial lineages in animals, it has become apparent that many independent studies are needed to support a robust phylogenetic inference. The aim of this study was thus to further characterize the maternal lineage, proposed to originate in southwestern region of China, using a wider survey of diverse goat breeds in China. To this end, we sequenced the mitochondrial hypervariable region 1 (HVR1) of the mtDNA control region in 145 goats of 12 Chinese breeds. Phylogenetic analysis revealed that Chinese goats were classified into four distinct lineages (A, B, C and D) as previously reported. A Mantel test and the analysis of Analysis of Molecular Variance (ANOVA) indicated that there was not an obvious geographic structure among Chinese goat breeds. Population expansion analysis based on mismatch distribution and Fu's Fs statistic indicate that two expansion events in Chinese goats occurred respectively at about 11 and 29 mutational time units ago, revealing two star-like subclades in lineage B corresponding to two population expansion events. Moreover, lineage B sequences were presented only in the breeds of southwestern or surrounding regions of China. Multiple lines of evidence from this study and previous studies indicate that for Chinese goats mtDNA lineage B originated from the southwestern region of China.


Subject(s)
Complementarity Determining Regions/genetics , Goats/genetics , Mitochondria/genetics , Animals , China , DNA, Mitochondrial/genetics , Female , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...