Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39338338

ABSTRACT

The skin barrier is essential for maintaining the body's internal homeostasis, protecting against harmful external substances, and regulating water and electrolyte balance. Traditional Chinese Medicine (TCM) offers notable advantages in restoring skin barrier function due to its diverse components, targets, and pathways. Recent studies have demonstrated that active ingredients in TCM can safely and effectively repair damaged skin barriers, reinstating their proper functions. This review article provides a comprehensive overview of the mechanisms underlying skin barrier damage and explores how the bioactive constituents of TCM contribute to skin barrier repair, thereby offering a theoretical framework to inform clinical practices.

2.
Curr Drug Metab ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39108113

ABSTRACT

OBJECTIVE: Sakurasosaponin, a primary bioactive saponin from Aegiceras corniculatum, shows potential as an anti-cancer agent. However, there is a lack of information on its in vivo metabolism. This study aims to profile the in vivo metabolites of sakurasosaponin in rat feces, urine, and plasma after oral administration. An efficient strategy using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was developed, which combined metabolic prediction, multiple mass defects filtering, and highresolution extracted ion chromatograms for rapid and systematic analysis. METHODS: Firstly, a theoretical list of metabolites for sakurasosaponin was developed. This was done by considering the metabolic pathways of saponins. Next, the multiple mass defects filtering method was employed to identify potential metabolites in feces and urine, using the unique metabolites of sakurasosaponin as multiple mass defects filtering templates. Subsequently, a high-resolution extracted ion chromatogram was used to quickly determine the metabolites in rat plasma post-identification in feces and urine. Lastly, the analysis of accurate mass, typical neutral loss, and diagnostic ion of the candidate metabolites was carried out to confirm their structural elucidation, and metabolic pathways of sakurasosaponin in vivo were also proposed. RESULTS: In total, 30 metabolites were provisionally identified in feces, urine, and plasma. Analysis of metabolic pathways revealed isomerization, deglycosylation, oxidation, hydroxylation, sulfate conjugation, glucuronide conjugation, and other related reactions as the primary biotransformation reactions of sakurasosaponin in vivo. CONCLUSION: The findings demonstrate that the designed research strategy effectively minimizes matrix interference, prevents the omission of low-concentration metabolites, and serves as a foundation for the discovery of active metabolites of sakurasosaponin.

3.
Front Cell Dev Biol ; 12: 1431423, 2024.
Article in English | MEDLINE | ID: mdl-39156976

ABSTRACT

The PI3K/AKT/GSK-3ß signaling pathway plays a pivotal role in numerous physiological and pathological processes, including cell proliferation, apoptosis, differentiation, and metabolic regulation. Aberrant activation of the PI3K/AKT pathway is intricately linked to development of tumor. GSK-3ß, belonging to the serine/threonine protein kinase family, is crucial in the pathogenesis of liver cancer. As a key rate-limiting enzyme in the glucose metabolism pathway, GSK-3ß significantly impacts the growth, proliferation, metastasis, and apoptosis of liver cancer cells. It is also implicated in chemotherapy resistance. Elevated expression of GSK-3ß diminishes the sensitivity of liver cancer cells to chemotherapeutic agents, thereby playing a substantial role in the development of drug resistance. Consequently, targeting of GSK-3ß, particularly within the PI3K/AKT signaling pathway, is regarded as a promising therapeutic strategy for liver cancer. The precise identification and subsequent modulation of this pathway represent a substantial potential for innovative clinical interventions in the management of liver cancer.

4.
Front Neurol ; 15: 1417186, 2024.
Article in English | MEDLINE | ID: mdl-39144704

ABSTRACT

Background and purpose: Arteriosclerotic cerebral small vessel disease (aCSVD) is a cause of cognitive impairment, dementia, and stroke. Developing a better understanding of the risk factor of aCSVD is key to reducing the incidence of these conditions. This study investigated the association between intracranial arterial calcification (IAC) and total cerebral small vessel disease (CSVD) burden score. Materials and methods: This is a retrospective study, the subjects were transient ischemic attack (TIA) or acute ischemic stroke (AIS) patients. The data of 303 inpatients admitted to our study hospital between December 2018 and July 2020 were analyzed. Four imaging markers of CSVD (lacunes, white matter hyperintensities, cerebral microbleeds, and enlarged perivascular spaces) were evaluated by magnetic resonance imaging, and a total CSVD burden score was calculated. The experimental group was divided into four subgroups according to total CSVD burden score (1-4 points). Patients without CSVD (0 points) served as the control group. Head computerized tomography (CT) scans were used to assess ICA, using Babiarz's method. The correlations between IAC and single imaging markers of CSVD were determined using Spearman's rank correlation. Binary logic regression analysis and multivariate ordered logic regression analysis were used to determine the associations between IAC and aCSVD. Results: IAC was positively correlated with total CSVD burden score (r = 0.681), deep white matter hyperintensities (r = 0.539), periventricular white matter hyperintensities (r = 0.570), cerebral microbleeds (r = 0.479), lacunes (r = 0.541), and enlarged perivascular spaces (r = 0.554) (all p < 0.001). After adjusting for the confounding factors of age, diabetes, and hypertension, aCSVD was independently associated with IAC grade 1-2 [odds ratio (OR) = 23.747, 95% confidence interval (CI) = 8.376-67.327] and IAC grade 3-4 (OR = 30.166, 95% CI = 8.295-109.701). aCSVD severity was independently associated with IAC grade 3-4 (OR = 4.697, 95% CI = 1.349-16.346). Conclusion: IAC is associated with the total CSVD burden score and single imaging signs.

5.
J Pharm Biomed Anal ; 249: 116347, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39029355

ABSTRACT

Gnetum montanum Markgr. (Gnetaceae) is a commonly used traditional herbal medicine among the Yao ethnic group, with potential effects in preventing and treating tumors. However, the substance basis of its anti-tumor properties remains unclear. This study utilized ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) to identify the chemical components of G. montanum extract (GME) and its absorbed prototypes in cynomolgus monkey plasma after oral administration. A total of 57 compounds were detected in the GME, with 14 compounds in positive ion mode and 43 compounds in negative ion mode. In the cynomolgus monkey plasma, 17 compounds were identified, with 3 compounds in positive ion mode and 14 compounds in negative ion mode. Subsequently, we utilized high content screening technology to investigate the anti-tumor effects of GME on colon cancer, lung cancer, breast cancer, gastric cancer, liver cancer, and esophageal cancer. We found that the GME exhibited significant proliferation inhibition on colon cancer cells SW480, with an IC50 value of 50.77 µg/mL. Further research using component separation and pharmacological tracking revealed that the F2 component of the GME demonstrated notable anti-tumor effects. Through UPLC-MS identification, the chemical components in the F2 fraction were identified as pinoresinol diglucoside, (+)-pinoresinol-4-O-beta-D-glucopyranoside, ursolic acid, and gnetol. In conclusion, this study contributes to elucidating the anti-tumor pharmacological basis of GME and provides robust support for future drug design and development.


Subject(s)
Antineoplastic Agents, Phytogenic , Macaca fascicularis , Plant Extracts , Animals , Administration, Oral , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Plant Extracts/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacokinetics , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/blood , Humans , Cell Line, Tumor , Male , Cell Proliferation/drug effects , Mass Spectrometry/methods , Female , Tandem Mass Spectrometry/methods
6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 731-738, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948282

ABSTRACT

Objective: To explore the effects of microRNA-342-3p/Mg2+Mn2+-dependent protein phosphatase 1E (miR-342-3p/PPM1E) on the proliferation, migration, and invasion of clear cell renal cell carcinoma (ccRCC) cells. Methods: The gene chips GSE12105, GSE23085, GSE66271, and GSE66270 were searched, and the relationship between miR-342-3p, PPM1E, and the clinical malignant phenotypes of ccRCC was analyzed. ACHN and 769-P cells were transfected with miR-342-3p inhibitor. The effects of miR-342-3p on cell proliferation, migration, and invasion were examined. ACHN cell line with stable and high expression of miR-342-3p was constructed, and the tumorigenicity of the cell line in BALB/c nude mice was observed. The targeted relationship between miR-342-3p and PPM1E was verified by dual-luciferase reporter gene assay. The cells were transfected with miR-342-3p mimic and pcDNA-PPM1E plasmids to observe whether PPM1E could reverse the effects of miR-342-3p overexpression on the proliferation, migration, and invasion of the cells. Results: The expression of miR-342-3p was upregulated in ccRCC, and there were significant differences among patients with tumors of different T stages and G stages and those with different prognoses (P<0.05). The overall survival in the miR-342-3p high-expression group was significantly shorter than that in the low-expression group (P<0.05). Compared with those in the miR-NC group, the miR-342-3p level was significantly downregulated in the inhibitor group, and the cell proliferation ability and the numbers of migrating and invading cells were also significantly decreased (P<0.05). Compared with the miR-NC group, miR-342-3p group had significantly increased volume and mass of tumor tissues and miR-342-3p level, but significantly decreased level of PPM1E mRNA (P<0.05). The expression of PPM1E was downregulated in ccRCC, and there were significant differences among patients with tumors of different M stages, N stages, and G stages, and different recurrence statuses (P<0.05). The miR-342-3p could inhibit the expression of PPM1E in a targeted way. Compared with the miR-NC group, the miR-342-3p group had significantly increased cell proliferation ability and increased numbers of migrating and invading cells (P<0.05). However, PPM1E could reverse the promotion effect of miR-342-3p mimic on ccRCC cells (P<0.05). Conclusion: The miR-342-3p can inhibit PPM1E expression in a targeted way, and thus promotes the proliferation, migration, and invasion of ccRCC cells.


Subject(s)
Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Kidney Neoplasms , Mice, Inbred BALB C , Mice, Nude , MicroRNAs , Neoplasm Invasiveness , Protein Phosphatase 2C , MicroRNAs/genetics , MicroRNAs/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Cell Proliferation/genetics , Cell Movement/genetics , Humans , Animals , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mice , Protein Phosphatase 2C/genetics , Protein Phosphatase 2C/metabolism , Cell Line, Tumor
7.
Integr Zool ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082860

ABSTRACT

A possible explanation for ocean acidification-induced changes in fish behavior is a systemic effect on the nervous system. Three biological barriers at the blood-brain interface effectively separate the brain from the body fluids. It is not known whether fish brain regions in contact with these barriers are affected by acidification. Here, we studied structural changes in medaka (Oryzias melastigma) brain regions contacting cerebrospinal fluid (CSF) after short-term (7 days) CO2 exposure. The brain water content decreased significantly and the superficial structure of the pia mater was changed, but there was no obvious damage to the internal structures of the brain after seawater acidification. Seawater acidification also led to an increase in apoptosis and a decrease in the number of proliferative cells in brain areas contacting CSF. These results indicate that the structure of CSF-contacting brain regions in medaka was affected by seawater acidification, and the brain responded to seawater acidification stress by increasing apoptosis and reducing proliferation.

8.
Front Pharmacol ; 15: 1365949, 2024.
Article in English | MEDLINE | ID: mdl-38903995

ABSTRACT

Cinnamaldehyde is extracted from Cinnamomum cassia and other species, providing diverse sources for varying chemical properties and therapeutic effects. Besides natural extraction, synthetic production and biotechnological methods like microbial fermentation offer scalable and sustainable alternatives. Cinnamaldehyd demonstrates a broad pharmacological range, impacting various diseases through detailed mechanisms. This review aims to encapsulate the diverse therapeutic effects of cinnamaldehyde, its molecular interactions, and its potential in clinical applications. Drawing on recent scientific studies and databases like Web of Science, PubMed, and ScienceDirect, this review outlines cinnamaldehyde's efficacy in treating inflammatory conditions, bacterial infections, cancer, diabetes, and cardiovascular and kidney diseases. It primarily operates by inhibiting the NF-κB pathway and modulating pro-inflammatory mediators, alongside disrupting bacterial cells and inducing apoptosis in cancer cells. The compound enhances metabolic health by improving glucose uptake and insulin sensitivity and offers cardiovascular protection through its anti-inflammatory and lipid-lowering effects. Additionally, it promotes autophagy in kidney disease management. Preclinical and clinical research supports its therapeutic potential, underscoring the need for further investigation into its mechanisms and safety to develop new drugs based on cinnamaldehyde.

9.
Ecol Evol ; 14(5): e11355, 2024 May.
Article in English | MEDLINE | ID: mdl-38694754

ABSTRACT

The mitochondrial genome (mitogenome) has been extensively used as molecular markers in determining the insect phylogenetic relationships. In order to resolve the relationships among tribes and subtribes of Satyrinae at the mitochondrial genomic level, we obtained the complete mitogenome of Aulocera merlina (Oberthür, 1890) (Lepidoptera: Nymphalidae: Satyrinae) with a size of 15,259 bp. The mitogenome consisted of 37 typical genes, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an A + T-rich region. The gene organization and arrangement were similar to those of all other known Satyrinae mitogenomes. All PCGs were initiated with the canonical codon pattern ATN, except for the cox1 gene, which used an atypical CGA codon. Nine PCGs used the complete stop codon TAA, while the remaining PCGs (cox1, cox2, nad4, and nad5) were terminated with a single T nucleotide. The canonical cloverleaf secondary structures were found in all tRNAs, except for trnS1 which lacked a dihydrouridine arm. The 448 bp A + T-rich region was located between rrnS and trnM, and it included the motif ATAGA followed by a 19-bp poly-T stretch and a microsatellite-like (TA)6 element preceded by the ATTTA motif. The phylogenetic tree, inferred using Bayesian inference and maximum likelihood methods, generated similar tree topologies, revealing well-supported monophyletic groups at the tribe level and recovering the relationship ((Satyrini + Melanitini) + ((Amathusiini + Elymniini) + Zetherini)). The close relationship between Satyrina and Melanargiina within the Satyrini was widely accepted. Additionally, Lethina, Parargina, and Mycalesina were closely related and collectively formed a sister group to Coenonymphina. Moreover, A. merlina was closely related to Oeneis buddha within the Satyrina. These findings will provide valuable information for future studies aiming to elucidate the phylogenetic relationships of Satyrinae.

10.
Anal Chim Acta ; 1285: 342025, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38057062

ABSTRACT

Biogenic amines (BAs), as important indicators for evaluating food spoilage caused by fermentation processes or microbial activities, present significant risks of food safety. Consequently, the development of a simple, sensitive, and selective detection method for amines is of great importance. In this study, we proposed a three-in-one sensor 3,6-bis(dimethylamino)-9-(ethylthio)xanthylium (PSE) for high sensitivity and selectivity detecting BAs with multimodal responses, including olfactory, colorimetric, and fluorescent signals, thus facilitating convenient real-time detection of BAs. Mechanism study indicated that the nucleophilic substitution of PSE with BAs induced such rapid multi-responses with a low detection limit (LOD = 0.03 µM). We further fabricated PSE loaded paper for portable detection of BAs vapors. And the accurate determination of BAs levels is achieved through analyzing the RGB color mode. Finally, we successfully applied these test strips for non-destructive assessing meat beef freshness with the assistance of a smartphone in on-site scenarios.


Subject(s)
Biogenic Amines , Food Safety , Animals , Cattle , Biogenic Amines/analysis , Meat/analysis , Colorimetry
11.
Chin Med ; 18(1): 124, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37742025

ABSTRACT

Tumours do not exist in isolation from the organism; their growth, proliferation, motility, and immunosuppressive response are intricately connected to the tumour's microenvironment. As tumour cells and the microenvironment coevolve, an inflammatory microenvironment ensues, propelling the phenomenon of inflammation-cancer transformation-an idea proposed by modern medicine. This review aims to encapsulate the array of representative factors within the tumour's inflammatory microenvironment, such as interleukins (IL-6, IL-10, IL-17, IL-1ß), transforming growth factor-beta (TGF-ß), interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMPs). Moreover, drawing upon research in traditional Chinese medicine (TCM) and pharmacology, we explore the delicate interplay between these factors and tumour-associated inflammatory cells: tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (TANs) and dendritic cells (DCs). By analyzing the tumour-promoting effects of these entities, we delve into the connotations of Academician Tong Xiao-lin's novel model of "state-target differentiation" and its application in the diagnosis and treatment of tumours. Our aim is to enhance the precision and targeting of tumour treatment in clinical practice. Delving deeper into our understanding of tumour pathogenesis through the lens of modern medicine, we discern the key etiology and pathogenesis throughout the entire developmental stage of tumours, unveiling the evolutionary patterns of Chinese Medicine (CM) states: heat state → phlegm state → stagnation state → deficiency state. Building upon this foundation, we devised a state-regulating formula. Simultaneously, drawing on pharmacological research in traditional Chinese medicine (TCM), we meticulously identified a range of targeted drugs that effectively modulate the aforementioned tumour-related mediators. This comprehensive strategy-a harmonious integration of state identification, target recognition, and simultaneous regulation-aims to elevate clinical efficacy. The fusion of TCM with Western medicine in tumour treatment introduces novel dimensions to the precise and refined application of TCM in clinical practice.

13.
Environ Res ; 236(Pt 1): 116745, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37500040

ABSTRACT

The activation of persulfate technology using carbon-based materials doped with heteroatoms has been extensively researched for the elimination of refractory pollutants in wastewater. In this study, metal-organic frameworks were utilized as precursors to synthesize P, N dual-doped carbon material (PNC), which was employed to activate peroxymonosulfate (PMS) for the degradation of tetracycline hydrochloride (TCH). The results demonstrated a 90.2% removal efficiency of total organic carbon within 60 min. The significant increase of surface defects on the nitrogen self-doped porous carbon materials anchored with phosphorus promoted the conversion of superoxide radical to singlet oxygen during PMS activation, which was identified as the key active species of PNC/PMS system. Additionally, the enhanced direct electron transfer also facilitated the degradation of TCH. Consequently, TCH was successfully degraded into nontoxic and harmless inorganic small molecules. The findings of this research provide valuable insights into improving the performance of heteroatom-doped carbon materials for pollutant degradation by activating PMS and transforming the non-radical pathway. The results highlight the potential of metal-organic frameworks derived heteroatoms dual-doped porous carbon catalysts for the development of advanced treatment technologies in wastewater treatment.

14.
Front Immunol ; 14: 1134123, 2023.
Article in English | MEDLINE | ID: mdl-37063841

ABSTRACT

Objectives: The Notch signaling pathway has been implicated in the pathogenesis of active tuberculosis (TB), and Th1-type cell-mediated immunity is essential for effective control of mycobacterial infection. However, it remains unclear whether Notch signaling molecules (Notch1, DLL1, and Hes1) and Th1-type factors (T-bet and IFN-γ) can serve as biomarkers for tracking the progression of active TB at different stages along with peripheral blood white blood cell (WBC) parameters. Methods: A total of 60 participants were enrolled in the study, including 37 confirmed TB patients (mild (n=17), moderate/severe (n=20)) and 23 healthy controls. The mRNA expression of Notch1, DLL1, Hes1, T-bet and IFN-γ in the peripheral blood mononuclear cells (PBMCs) of the subjects was measured by RT-qPCR, then analyzed for differences. Receiver Operating Characteristic curve (ROC) was used to assess the effectiveness of each factor as a biomarker in identifying lung injury. Results: We found that mRNA expression levels of Notch1, DLL1, and Hes1 were upregulated in active TB patients, with higher levels observed in those with moderate/severe TB than those with mild TB or without TB. In contrast, mRNA levels of T-bet and IFN-γ were downregulated and significantly lower in mild and moderate/severe cases. Furthermore, the combiROC analysis of IFN-γ and the percentage of lymphocytes (L%) among WBC parameters showed superior discriminatory ability compared to other factors for identifying individuals with active TB versus healthy individuals. Notably, Notch pathway molecules were more effective than Th1-type factors and WBC parameters in differentiating mild and moderate/severe cases of active TB, particularly in the combiROC model that included Notch1 and Hes1. Conclusions: Our study demonstrated that Notch1, Hes1, IFN-γ, and L% can be used as biomarkers to identify different stages of active TB patients and to monitor the effectiveness of treatment.


Subject(s)
Leukocytes, Mononuclear , Tuberculosis , Humans , Leukocytes, Mononuclear/metabolism , Tuberculosis/diagnosis , Biomarkers , Prognosis , RNA, Messenger , Receptor, Notch1/genetics , Receptor, Notch1/metabolism
15.
Mar Pollut Bull ; 190: 114831, 2023 May.
Article in English | MEDLINE | ID: mdl-36944286

ABSTRACT

The cuttlefish (Sepiella inermis) is an economically important species in the coastal seas of China. The impacts of ocean acidification on the ability of juvenile cuttlefish to select a suitable habitat, its hunting and swimming behavior, remains unknown. We examined behavior-related responses and the eye and cuttlebone structure of juvenile cuttlefish following short-term exposure to CO2-enriched seawater. The predation success rate decreased with the elevation in CO2 concentration. In the CO2 treatment groups, cuttlefish spent more time in the dark zone and the average swimming speed and total swimming distance significantly decreased. The structure of the retina and cuttlebone was affected by seawater acidification. Moreover, apoptotic cells were significantly increased in the eyes. In the wild, the impairment of the eye and cuttlebone may decrease the predation ability of juvenile cuttlefish and negatively affect their ability to select a suitable habitat, which would be detrimental to its population.


Subject(s)
Decapodiformes , Seawater , Animals , Decapodiformes/chemistry , Seawater/chemistry , Hydrogen-Ion Concentration , Ocean Acidification , Carbon Dioxide/analysis , Oceans and Seas
16.
Front Pharmacol ; 13: 1069310, 2022.
Article in English | MEDLINE | ID: mdl-36532729

ABSTRACT

Aquaporins (AQPs) are a family of transmembrane proteins expressed in various organ systems. Many studies have shown that the abnormal expression of AQPs is associated with gastrointestinal, skin, liver, kidneys, edema, cancer, and other diseases. The majority of AQPs are expressed in the digestive system and have important implications for the physiopathology of the gastrointestinal tract as well as other tissues and organs. AQP regulators can prevent and treat most gastrointestinal-related diseases, such as colorectal cancer, gastric ulcer, and gastric cancer. Although recent studies have proposed clinically relevant AQP-targeted therapies, such as the development of AQP inhibitors, clinical trials are still lacking and there are many difficulties. Traditional Chinese medicine (TCM) has been used in China for thousands of years to prevent, treat and diagnose diseases, and is under the guidance of Chinese medicine (CM) theory. Herein, we review the latest research on the regulation of AQPs by TCMs and their active components, including Rhei Radix et Rhizoma, Atractylodis macrocephalae Rhizoma, Salviae miltiorrhizae Radix et Rhizoma, Poria, Astragali radix, and another 26 TCMs, as well as active components, which include the active components include anthraquinones, saponins, polysaccharides, and flavonoid glycosides. Through our review and discussion of numerous studies, we attempt to explore the regulatory effects of TCMs and their active components on AQP expression in the corresponding parts of the body in terms of the Triple Energizer concept in Chinese medicine defined as "upper energizer, middle energizer, and lower energizer,"so as to offer unique opportunities for the development of AQP-related therapeutic drugs for digestive system diseases.

17.
Front Pharmacol ; 13: 1039412, 2022.
Article in English | MEDLINE | ID: mdl-36313301

ABSTRACT

In recent years, activation of thermal transient receptor potential (TRP) ion channels at a range of temperatures has received widespread attention as a target for traditional Chinese medicine (TCM) to regulate body temperature and relieve pain. Discovery of transient receptor potential vanilloid 1 (TRPV1) was awarded a Nobel Prize, reflecting the importance of these channels. Here, the regulatory effects of TCMs and their active ingredients on TRP ion channels are reviewed, and future directions for research on the cold, hot, warm, cool, and neutral natures of TCMs are considered. In herbs with cold, hot, warm, cool, and neutral natures, we found 29 TCMs with regulatory effects on TRP ion channels, including Cinnamomi Cortex, Capsici Fructus, Rhei Radix et Rhizoma, Macleayae cordatae Herba, Menthae Haplocalycis Herba, and Rhodiolae Crenulatae Radix et Rhizoma. Although some progress has been made in understanding the regulation of TRP ion channels by TCMs and their ingredients, the molecular mechanism by which TCMs have this effect remains to be further studied. We hope this review will provide a reference for further research on the cold, hot, warm, cool, and neutral natures of TCMs.

18.
J Sep Sci ; 45(18): 3443-3458, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35932223

ABSTRACT

In this study, we proposed an integrated analytical strategy for the rapid and comprehensive discovery of a specific class of secoiridoid glycosides from a Yao medicine, Jasminum pentaneurum Hand.-Mazz. The strategy fully took advantage of the accuracy of ultra-performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry, and the efficiency of diagnostic ion filtering and neutral loss filtering. Twenty-four secoiridoid glycosides, including three known ones and 21 unreported ones, were rapidly discovered and characterized based on the detail analysis of their mass spectrometry data. Particularly, 10-syringicoyl-ligustroside (18) was isolated under the guidance of mass spectrometry analysis. Its chemical structure was elucidated on the basis of extensive spectroscopic data analysis, and absolute configuration was further elucidated by comparison of its experimental and electronic circular dichroism spectra. Furthermore, the mass spectrometry data of 18 was analyzed and the corresponding results indicated that its fragment pathway was fully consistent with the applied diagnostic ion filtering and neutral loss filtering rules, and thus the precision and efficiency of the integrated strategy were validated. The result demonstrated that the proposed integrated strategy could serve as a rapid, accurate, and comprehensive targeted components discovery method to effectively screen out those ingredients of interest from the complex herbal medicines.


Subject(s)
Drugs, Chinese Herbal , Jasminum , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Drugs, Chinese Herbal/analysis , Iridoid Glycosides/analysis , Tandem Mass Spectrometry/methods
19.
Curr Drug Metab ; 23(8): 652-665, 2022.
Article in English | MEDLINE | ID: mdl-35980053

ABSTRACT

AIMS: In this study, we aim to establish an integrated research strategy for the rapid chemical profiling of Compound Huanggen Granules (CHG) and absorbed prototypes in plasma by integrating the UHPLC-Q-TOF-MSE method and data post-processing strategy, to provide some valuable research basis for the further studies on the quality control, pharmacokinetics and pharmacodynamics of CHG. BACKGROUND: Compound Huanggen Granules (CHG), a traditional Chinese medicine (TCM) hospital preparation, has long been used in clinical practice for the prevention and treatment of liver fibrosis. However, due to the lack of in vitro chemical and in vivo metabolism studies, its pharmacodynamic material basis is still unrevealed. OBJECTIVE: To simplify the mass data post-processing process and enhance the structural identification efficiency by reducing the possibility of false positive, and rapidly identify the absorbed prototypes in plasma after oral administration of CHG. METHODS: An analytical strategy integrating ultra high-performance liquid chromatography coupled with quadrupletime- of-flight mass spectrometry (UHPLC-Q-TOF-MSE, E represents collision energy) method and data postprocessing strategy based on a self-built in-house components database was established and utilized for the rapid characterization of the multi-constituents of CHG and prototypes in cynomolgus monkey plasma after oral administration. RESULTS: As a result, a total of 81 compounds, including 14 phenolic acids, 6 coumarins, 25 flavonoids, 5 anthraquinones, 5 phenylpropanoids, 15 triterpenoid saponins, and 11 others, were plausibly or unambiguously identified based on their accurate masses, and MS/MS fragment pathways analysis, and also by comparison of retention time and MS data with reference standards. In the in vivo study, according to the extracted ion chromatograms (EICs) of identified components, 34 absorbed prototypical components were rapidly identified in cynomolgus monkey plasma after oral administration. CONCLUSION: It was demonstrated that the data post-processing strategy applied in this study could greatly simplify the data post-processing process and enhance the structural identification efficiency by reducing the possibility of false positives, and the results obtained might be helpful for further studies on the quality control, pharmacokinetics and pharmacodynamics of CHG.


Subject(s)
Medicine, Chinese Traditional , Tandem Mass Spectrometry , Animals , Macaca fascicularis
20.
Angew Chem Int Ed Engl ; 61(18): e202201540, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35199428

ABSTRACT

Direct conversion of methane into value-added chemicals, such as methanol under mild conditions, is a promising route for industrial applications. In this work, atomically dispersed Rh on TiO2 suspended in an aqueous solution was used for the oxidation of methane to methanol. Promoted by copper cations (as co-catalyst) in solution, the catalysts exhibited high activity and selectivity for the production of methanol using molecular oxygen with the presence of carbon monoxide at 150 °C with a reaction pressure of 31 bar. Millimole level yields of methanol were reached with the selectivity higher than 99 % using the Rh/TiO2 catalysts with the promotion of the copper cation. CO was the reductive agent to generate H2 from H2 O, which led to the formation of H2 O2 through the reaction of H2 and O2 . Atomically dispersed Rh activated the C-H bond in CH4 and catalyzed the oxidation using H2 O2 . Copper cations maintained the low-valence state of Rh. Moreover, copper acted as a scavenger for suppressing the overoxidation, thus leading to the high selectivity of methanol.

SELECTION OF CITATIONS
SEARCH DETAIL