Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 10(7): uhad105, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37577401

ABSTRACT

Cytoplasmic male sterility (CMS) has long been used to produce seedless fruits in perennial woody crops like citrus. A male-sterile somatic cybrid citrus (G1 + HBP) was generated by protoplast fusion between a CMS callus parent 'Guoqing No. 1' Satsuma mandarin (Citrus unshiu, G1) and a fertile mesophyll parent Hirado Buntan pummelo (Citrus grandis, HBP). To uncover the male-sterile mechanism of G1 + HBP, we compared the transcriptome profiles of stamen organ and cell types at five stages between G1 + HBP and HBP, including the initial stamen primordia, enlarged stamen primordia, pollen mother cells, tetrads, and microspores captured by laser microdissection. The stamen organ and cell types showed distinct gene expression profiles. A majority of genes involved in stamen development were differentially expressed, especially CgAP3.2, which was downregulated in enlarged stamen primordia and upregulated in tetrads of G1 + HBP compared with HBP. Jasmonic acid- and auxin-related biological processes were enriched among the differentially expressed genes of stamen primordia, and the content of jasmonic acid biosynthesis metabolites was higher in flower buds and anthers of G1 + HBP. In contrast, the content of auxin biosynthesis metabolites was lower in G1 + HBP. The mitochondrial tricarboxylic acid cycle and oxidative phosphorylation processes were enriched among the differentially expressed genes in stamen primordia, meiocytes, and microspores, indicating the dysfunction of mitochondria in stamen organ and cell types of G1 + HBP. Taken together, the results indicate that malfunction of mitochondria-nuclear interaction might cause disorder in stamen development, and thus lead to male sterility in the citrus cybrid.

2.
Plant Reprod ; 36(4): 287-300, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37247027

ABSTRACT

KEY MESSAGE: Genome-wide identification of C2H2-ZF gene family in the poly- and mono-embryonic citrus species and validation of the positive role of CsZFP7 in sporophytic apomixis. The C2H2 zinc finger (C2H2-ZF) gene family is involved in plant vegetative and reproductive development. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in some horticultural plants, little is known about the C2H2-ZFPs and their function in citrus. In this work, we performed a genome-wide sequence analysis and identified 97 and 101 putative C2H2-ZF gene family members in the genomes of sweet orange (C. sinensis, poly-embryonic) and pummelo (C. grandis, mono-embryonic), respectively. Phylogenetic analysis categorized citrus C2H2-ZF gene family into four clades, and their possible functions were inferred. According to the numerous regulatory elements on promoter, citrus C2H2-ZFPs can be divided into five different regulatory function types that indicate functional differentiation. RNA-seq data revealed 20 differentially expressed C2H2-ZF genes between poly-embryonic and mono-embryonic ovules at two stages of citrus nucellar embryogenesis, among them CsZFP52 specifically expressed in mono-embryonic pummelo ovules, while CsZFP7, 37, 44, 45, 67 and 68 specifically expressed in poly-embryonic sweet orange ovules. RT-qPCR further validated that CsZFP7 specifically expressed at higher levels in poly-embryonic ovules, and down-regulation of CsZFP7 in the poly-embryonic mini citrus (Fortunella hindsii) increased rate of mono-embryonic seeds compared with the wild type, indicating the regulatory potential of CsZFP7 in nucellar embryogenesis of citrus. This work provided a comprehensive analysis of C2H2-ZF gene family in citrus, including genome organization and gene structure, phylogenetic relationships, gene duplications, possible cis-elements on promoter regions and expression profiles, especially in the poly- and mono-embryogenic ovules, and suggested that CsZFP7 is involved in nucellar embryogenesis.

3.
Plant Physiol ; 192(4): 2838-2854, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37204807

ABSTRACT

Somatic embryogenesis (SE) is a key regeneration pathway in various biotechnology approaches to crop improvement, especially for economically important perennial woody crops like citrus. However, maintenance of SE capability has long been a challenge and becomes a bottleneck in biotechnology-facilitated plant improvement. In the embryogenic callus (EC) of citrus, we identified 2 csi-miR171c-targeted SCARECROW-LIKE genes CsSCL2 and CsSCL3 (CsSCL2/3), which exert positive feedback regulation on csi-miR171c expression. Suppression of CsSCL2 expression by RNA interference (RNAi) enhanced SE in citrus callus. A thioredoxin superfamily protein CsClot was identified as an interactive protein of CsSCL2/3. Overexpression of CsClot disturbed reactive oxygen species (ROS) homeostasis in EC and enhanced SE. Chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA-Seq identified 660 genes directly suppressed by CsSCL2 that were enriched in biological processes including development-related processes, auxin signaling pathway, and cell wall organization. CsSCL2/3 bound to the promoters of regeneration-related genes, such as WUSCHEL-RELATED HOMEOBOX 2 (CsWOX2), CsWOX13, and Lateral Organ Boundaries Domain 40 (LBD40), and repressed their expression. Overall, CsSCL2/3 modulate ROS homeostasis through the interactive protein CsClot and directly suppress the expression of regeneration-related genes, thus regulating SE in citrus. We uncovered a regulatory pathway of miR171c-targeted CsSCL2/3 in SE, which shed light on the mechanism of SE and regeneration capability maintenance in citrus.


Subject(s)
Citrus , Citrus/genetics , Citrus/metabolism , Reactive Oxygen Species/metabolism , Biotechnology , RNA-Seq , Regeneration , Plant Somatic Embryogenesis Techniques , Gene Expression Regulation, Plant
4.
Plant Physiol ; 190(4): 2519-2538, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36135821

ABSTRACT

Polyploidization leads to novel phenotypes and is a major force in evolution. However, the relationship between the evolution of new traits and variations in the post-translational modifications (PTM) of proteins during polyploidization has not been studied. Acetylation of lysine residues is a common protein PTM that plays a critical regulatory role in central metabolism. To test whether changes in metabolism in citrus fruit is associated with the reprogramming of lysine acetylation (Kac) in non-histone proteins during allotetraploidization, we performed a global acetylome analysis of fruits from a synthetic allotetraploid citrus and its diploid parents. A total of 4,175 Kac sites were identified on 1,640 proteins involved in a wide range of fruit traits. In the allotetraploid, parental dominance (i.e. resemblance to one of the two parents) in specific fruit traits, such as fruit acidity and flavonol metabolism, was highly associated with parental Kac level dominance in pertinent enzymes. This association is due to Kac-mediated regulation of enzyme activity. Moreover, protein Kac probably contributes to the discordance between the transcriptomic and proteomic variations during allotetraploidization. The acetylome reprogramming can be partially explained by the expression pattern of several lysine deacetylases (KDACs). Overexpression of silent information regulator 2 (CgSRT2) and histone deacetylase 8 (CgHDA8) diverted metabolic flux from primary metabolism to secondary metabolism and partially restored a metabolic status to the allotetraploid, which expressed attenuated levels of CgSRT2 and CgHDA8. Additionally, KDAC inhibitor treatment greatly altered metabolism in citrus fruit. Collectively, these findings reveal the important role of acetylome reprogramming in trait evolution during polyploidization.


Subject(s)
Citrus , Proteomics , Lysine/metabolism , Proteome/genetics , Proteome/metabolism , Fruit/metabolism , Citrus/genetics , Citrus/metabolism , Acetylation , Protein Processing, Post-Translational
5.
DNA Res ; 28(5)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34424285

ABSTRACT

Citrus nucellar poly-embryony (NPE) is a mode of sporophytic apomixis that asexual embryos formed in the seed through adventitious embryogenesis from the somatic nucellar cells. NPE allows clonal propagation of rootstocks, but it impedes citrus cross breeding. To understand the cellular processes involved in NPE initiation, we profiled the transcriptomes and DNA methylomes in laser microdissection captured citrus apomictic cells. In apomictic cells, ribosome biogenesis and protein degradation were activated, whereas auxin polar transport was repressed. Reactive oxygen species (ROS) accumulated in the poly-embryonic ovules, and response to oxidative stress was provoked. The global DNA methylation level, especially that of CHH context, was decreased, whereas the methylation level of the NPE-controlling key gene CitRWP was increased. A C2H2 domain-containing transcription factor gene and CitRWP co-expressed specifically in apomictic cells may coordinate to initiate NPE. The activated embryogenic development and callose deposition processes indicated embryogenic fate of nucellar embryo initial (NEI) cells. In our working model for citrus NPE initiation, DNA hyper-methylation may activate transcription of CitRWP, which increases C2H2 expression and ROS accumulation, triggers epigenetic regulation and regulates cell fate transition and NEI cell identity in the apomictic cells.


Subject(s)
Citrus , Citrus/genetics , Embryonic Development , Epigenesis, Genetic , Epigenome , Plant Breeding , Transcriptome
6.
Plant Cell Rep ; 39(12): 1609-1622, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32897396

ABSTRACT

KEY MESSAGE: The physical locations of citrus centromere are revealed by combining genetic and immunological assays for the first time and nine citrus centromere-specific markers for cytogenetics are mined. Centromere localization is challenging, because highly redundant repetitive sequences in centromeric regions make sequence assembly difficult. Although several citrus genomes have been released, the centromeric regions and their characteristics remain to be elucidated. Here, we mapped citrus centromeres through half-tetrad analysis (HTA) that included the genotyping of 54 tetraploid hybrids derived from 2n megagametophytes of Nadorcott tangor with 212 single nucleotide polymorphism (SNP) markers. The sizes of centromeric regions, which estimated based on the heterozygosity restitution rate pattern along the chromosomes, ranged from 1.12 to 18.19 Mb. We also profiled the binding sequences with the centromere-specific histone variant CenH3 by chromatin immunoprecipitation sequencing (ChIP-seq). Based on the positions of the top ten CenH3-enriched contigs, the sizes of centromeric regions were estimated to range from 0.01 to 7.60 Mb and were either adjacent to or included in the centromeric regions identified by HTA. We used DNA probes from two repeats selected from the centromeric regions and seven CenH3-binding centromeric repeats to verify centromeric locations by fluorescence in situ hybridization (FISH). Centromere localization in citrus will contribute to the mining of centromeric/pericentromeric markers, thus to facilitate the rapid identification of mechanisms underlying 2n gamete formation and serve the polyploidy breeding.


Subject(s)
Centromere/genetics , Citrus/genetics , Cytogenetics/methods , Antibody Specificity , Chromatin Immunoprecipitation Sequencing , Genes, Plant/immunology , Genotyping Techniques/methods , In Situ Hybridization, Fluorescence , Polymorphism, Single Nucleotide , Tetraploidy
7.
Plant Physiol ; 183(4): 1681-1695, 2020 08.
Article in English | MEDLINE | ID: mdl-32513835

ABSTRACT

MicroRNA399 (miR399) regulates phosphate homeostasis in plants by down-regulating the expression of PHOSPHATE2 (PHO2, or UBC24 encoding the ubiquitin-conjugating E2 enzyme). We previously identified CsmiR399a.1 in a small RNA sequencing screen of a male-sterile somatic cytoplasmic hybrid (or cybrid) of pummelo (Citrus grandis). Here, we report that miR399 affects reproductive development and male fertility in citrus. Down-regulation of CsmiR399a.1 using a short tandem target mimic (STTM) led to abnormal floral development, inhibition of anther dehiscence, and decreased pollen fertility. When grown in inorganic phosphate (Pi)-sufficient conditions, CsmiR399a.1-STTM plants had lower total phosphorus content in their leaves than the wild type and showed typical symptoms of Pi deficiency. In CsmiR399a.1-STTM plants, the expression of genes involved in starch metabolism and Pi homeostasis was significantly different than in the wild type. Thus, we conclude that miR399-STTM mimicked Pi deficiency, disturbed starch metabolism, and was responsible for pollen grain collapse in the transgenic lines. We identified CsUBC24, a citrus homolog of Arabidopsis (Arabidopsis thaliana) AtUBC24 (PHO2), as a target of CsmiR399a.1 that physically interacts with the floral development regulators SEPALLATA family (CsSEP1.1, CsSEP1.2, and CsSEP3) and the anther dehiscence regulator INDUCER OF CBF EXPRESSION1 (CsICE1). We hypothesize that CsUBC24 downregulates the CsSEPs, which disrupts the floral meristem identity regulatory network and leads to developmental abnormalities in flowers. By interacting with CsICE1, CsUBC24 disturbs stomate function on the anther surface, which inhibits anther dehiscence. These findings indicate that a miR399-based mechanism influences both reproductive development and male fertility in citrus.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/physiology , Citrus/metabolism , Citrus/physiology , Flowers/metabolism , Flowers/physiology , Plant Leaves/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Citrus/genetics , Flowers/genetics , Gene Expression Regulation, Plant , Plant Infertility/genetics , Plant Infertility/physiology , Plant Leaves/genetics , Plant Leaves/physiology , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
8.
Plant Sci ; 289: 110276, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31623787

ABSTRACT

The phenotypic variations that follow polyploidization are expected to improve agricultural productivity and efficiency [1]. However, the effect of polyploidization on plant metabolism has rarely been studied. This study evaluated the metabolic alterations that followed autotetraploidization in the fruit of Ponkan mandarin (C. reticulata Blanco) for three consecutive years and explored the underlying changes to the transcriptome. The autotetraploid (4x) Ponkan fruit had higher levels of total acids, ascorbic acid and total phenolic compounds than the diploid (2x). The primary metabolites especially the organic acids tended to accumulate at higher levels in the 4x fruit. Conversely, two major groups of secondary metabolites (i.e. flavonoids and carotenoids) tended to accumulate at lower levels. The expression levels of citric acid biosynthesis-related genes were unaltered in 4x fruit compared to the 2x fruit. Additionally, genes associated with the transport and utilization of citric acid were significantly down-regulated during ripening, which might induce increases in the levels of citric acid in the 4x fruit. Lower levels of flavonoids and carotenoids in the 4x fruit are potentially associated with decreases in the transport and utilization of citric acid, which is an important metabolite. Citric acid contributes to respiration by serving as an intermediated in the tricarboxylic acid cycle (TCA) and also provides carbon for the production of secondary metabolites. This study demonstrates that polyploidization can influence metabolism in plants.


Subject(s)
Carbon/metabolism , Citrus/genetics , Fruit/metabolism , Polyploidy , Citrus/metabolism , Fruit/genetics , Metabolic Flux Analysis , Transcriptome
9.
Plant Cell Rep ; 33(10): 1641-50, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24972825

ABSTRACT

KEY MESSAGE: 2 n megagametophyte formation plays an important role in polyploidization in polyembryonic citrus and is valuable for plant improvement. Tetraploid plants are frequently observed in the seedlings of diploid polyembryonic citrus genotypes. However, the mechanisms underlying the formation of tetraploids are still indistinct when apomictic citrus genotypes are used as female parent to cross with tetraploids. Herein, 54 tetraploid progenies, which were unexpectedly obtained previously from four 2x × 4x crosses using polyembryonic 'Nadorcott' tangor as seed parent, were analyzed by 22 simple sequence repeat (SSR) markers, aiming to reveal their genetic origin and the mechanism underlying 2n megagametophyte formation. The results showed that 13 tetraploids from all these four crosses were doubled diploids as indicated by their identical SSR allelic profile with their female parent; while the remaining 41 tetraploids apparently exhibited paternally derived alleles, which confirmed their zygotic origin. Furthermore, the genotyping of all hybrids indicated that all of them arose from 2n megagametophytes. Based on the genotypes of 2n megagametophytes, the analysis of maternal heterozygosity restitution (HR) for each marker showed that it varied from 0.00 to 87.80 % with a mean value of 40.89 %. In addition, it was observed that 13 markers displayed a lower rate than 50 %. On the basis of the above results, it can be speculated that the second division restitution (SDR) is the mechanism underlying the 2n megagametophyte formation in 'Nadorcott' tangor. The elucidation of the mechanism of 2n megagametophyte formation will be of great help to optimize further sexual hybridization for polyploids in citrus.


Subject(s)
Citrus/genetics , Tetraploidy , Diploidy , Genotype , Seedlings/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...