Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Ophthalmol ; 16(11): 1727-1733, 2023.
Article in English | MEDLINE | ID: mdl-38028515

ABSTRACT

AIM: To explore changes in the optic disc and peripapillary atrophy (PPA) in school-age children with ametropia using color fundus photography combined with artificial intelligence (AI) technology. METHODS: Based on the retrospective case-controlled study, 226 eyes of 113 children aged aged 6-12y were enrolled from October 2021 to May 2022. According to the results of spherical equivalent (SE), the children were divided into four groups: low myopia group (66 eyes), moderate myopia group (60 eyes), high myopia group (50 eyes) and emmetropia control group (50 eyes). All subjects underwent un-aided visual acuity, dilated pupil optometry, best-corrected visual acuity (BCVA), intraocular pressure, ocular axis measurement and color fundus photography. RESULTS: The width of PPA, horizontal diameter ratio of PPA to the optic disc and area ratio of PPA to the optic disc were significantly different among the four groups (P<0.05). The width of the nasal and temporal neuroretinal rim, the roundness of the optic disc, the height of PPA, the vertical diameter ratio of PPA to the optic disc, and the average density of PPA in the high myopia group were significantly different compared with the other three groups (P<0.05). There were strong negative correlations between SE and area ratio of PPA to the optic disc (r=-0.812, P<0.001) and strong positive correlation between axial length (AL) and area ratio of PPA to the optic disc (r=0.736, P<0.001). CONCLUSION: In school-age children with high myopia, the nasal and temporal neuroretinal rims are narrowed and even lost, which have high sensitivity. The area ratio of the PPA to the optic disc could be used as an early predictor of myopia progression, which is of great significance for the development prevention and management of myopia.

2.
Dis Markers ; 2022: 9431044, 2022.
Article in English | MEDLINE | ID: mdl-35082933

ABSTRACT

OBJECTIVE: To study the changes of macular retinal thickness and microvascular system in children with monocular hyperopic anisometropia and severe amblyopia using optical coherence tomography angiography (OCTA) and to explore the value of OCTA in the diagnosis and treatment of amblyopia. METHODS: Thirty-two children with monocular hyperopic anisometropia and severe amblyopia who were treated in the Department of Ophthalmology of the First Affiliated Hospital of Gannan Medical College from January 2020 to December 2020 were included in the study. Eyes with amblyopia (n = 32) served as the experimental group, and the contralateral healthy eyes (n = 32 eyes) served as the control group. All children underwent comprehensive ophthalmological examination including slit lamp, eye position, visual acuity, optometry, eye movement, intraocular pressure, ocular axis, and fundus examination to rule out organic lesions. Macular 6 mm × 6 mm scans were performed on both eyes of all subjects by the same experienced clinician using an OCTA instrument. After ImageJ processing, the vessel density, inner layer, and full-layer retinal thickness (RT) of superficial retinal capillary plexus (SCP) were obtained. All data were analyzed by SPSS21.0 software, and a paired t-test was used for comparison between groups. P < 0.05 was considered to indicate statistical significance. RESULTS: The vessel densities of macular SCP in the amblyopia and control groups were 47.66 ± 2.36% and 50.37 ± 2.24% in the outer superior, 49.19 ± 2.64% and 51.44 ± 2.44% in the inner inferior, 49.63 ± 2.51% and 51.41 ± 3.03% in the outer inferior, and 45.56 ± 3.44% and 50.44 ± 3.52% in the outer temporal regions, respectively. The vessel density of macular SCP in the amblyopia group was significantly lower than that in contralateral healthy eyes in the outer superior, inner inferior, outer inferior, outer temporal, and central regions. There was no significant difference between the two groups in the inner superior, inner nasal, outer nasal, and inner temporal regions. The macular RT in the amblyopia group and the control group is 90.38 ± 6.09 µm and 87.56 ± 5.55 µm in the outer temporal, respectively. The RT in the macular inner layer in the outer temporal region of the amblyopia group was thicker than that of the control group (P < 0.05). There was no significant difference in the other eight regions between the two groups. The whole macular RT in the amblyopia group was thicker than that in the control group in nine regions, and the central area of macular RT in the amblyopia and control groups was 229.06 ± 6.70 µm and 214.50 ± 10.36 µm, respectively. CONCLUSION: The OCTA results showed the overall RT of macula in 9 areas in the amblyopia group was thicker than that in the control group, which could show that the macular retinal thickness can be a potential way to distinguish the children with monocular hyperopic anisometropia and severe amblyopia.


Subject(s)
Amblyopia/pathology , Anisometropia/pathology , Macula Lutea/pathology , Tomography, Optical Coherence/methods , Visual Acuity/physiology , Case-Control Studies , Child , Cross-Sectional Studies , Female , Humans , Macula Lutea/blood supply , Male
SELECTION OF CITATIONS
SEARCH DETAIL