Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 330: 118214, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641076

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ferroptosis, a recently identified non-apoptotic form of cell death reliant on iron, is distinguished by an escalation in lipid reactive oxygen species (ROS) that are iron-dependent. This phenomenon has a strong correlation with irregularities in iron metabolism and lipid peroxidation. Salvia miltiorrhiza Bunge (DS), a medicinal herb frequently utilized in China, is highly esteemed for its therapeutic effectiveness in enhancing blood circulation and ameliorating blood stasis, particularly during the treatment of cardiovascular diseases (CVDs). Numerous pharmacological studies have identified that DS manifests antioxidative stress effects as well as inhibits lipid peroxidation. However, ambiguity persists regarding the potential of DS to impede ferroptosis in cardiomyocytes and subsequently improve myocardial damage post-myocardial infarction (MI). AIM OF THE STUDY: The present work focused on investigating whether DS could be used to prevent the ferroptosis of cardiomyocytes and improve post-MI myocardial damage. MATERIALS AND METHODS: In vivo experiments: Through ligation of the left anterior descending coronary artery, we constructed both a wild-type (WT) and NF-E2 p45-related factor 2 knockout (Nrf2-/-) mouse model of MI. Effects of DS and ferrostatin-1 (Fer-1) on post-MI cardiomyocyte ferroptosis were examined through detecting ferroptosis and myocardial damage-related indicators as well as Nrf2 signaling-associated protein levels. In vitro experiments: Erastin was used for stimulating H9C2 cardiomyocytes to construct an in vitro ferroptosis cardiomyocyte model. Effects of DS and Fer-1 on cardiomyocyte ferroptosis were determined based on ferroptosis-related indicators and Nrf2 signaling-associated protein levels. Additionally, inhibitor and activator of Nrf2 were used for confirming the impact of Nrf2 signaling on DS's effect on cardiomyocyte ferroptosis. RESULTS: In vivo: In comparison to the model group, DS suppressed ferroptosis in cardiomyocytes post-MI and ameliorated myocardial damage by inducing Nrf2 signaling-related proteins (Nrf2, xCT, GPX4), diminishing tissue ferrous iron and malondialdehyde (MDA) content. Additionally, it enhanced glutathione (GSH) levels and total superoxide dismutase (SOD) activity, effects that are aligned with those of Fer-1. Moreover, the effect of DS on alleviating cardiomyocyte ferroptosis after MI could be partly inhibited through Nrf2 knockdown. In vitro: Compared with the erastin group, DS inhibited cardiomyocyte ferroptosis by promoting the expression of Nrf2 signaling-related proteins, reducing ferrous iron, ROS, and MDA levels, but increasing GSH content and SOD activity, consistent with the effect of Fer-1. Additionally, Nrf2 inhibition increased erastin-mediated ferroptosis of cardiomyocytes through decreasing Nrf2 signaling-related protein expressions. Co-treatment with DS and Nrf2 activator failed to further enhance the anti-ferroptosis effect of DS. CONCLUSION: MI is accompanied by cardiomyocyte ferroptosis, whose underlying mechanism is probably associated with Nrf2 signaling inhibition. DS possibly suppresses ferroptosis of cardiomyocytes and improves myocardial damage after MI through activating Nrf2 signaling.


Subject(s)
Ferroptosis , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction , Myocytes, Cardiac , NF-E2-Related Factor 2 , Salvia miltiorrhiza , Signal Transduction , NF-E2-Related Factor 2/metabolism , Ferroptosis/drug effects , Animals , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Salvia miltiorrhiza/chemistry , Signal Transduction/drug effects , Male , Mice , Rats , Disease Models, Animal , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Cell Line
2.
J Pharm Pharmacol ; 75(11): 1467-1477, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37738327

ABSTRACT

OBJECTIVES: Ferroptosis, a new regulated cell death pathway, plays a crucial part in the development of cardiovascular disease. However, the precise underlying mechanism remains unclear. Therefore, this study aimed to elucidate this. METHODS: Herein, an erastin-induced H9C2 cell ferroptosis in vitro model and a myocardial infarction murine model, which was created by ligating the left anterior descending coronary artery, were established. Ferroptosis-related indicators, myocardial injury-related indicators, and Nrf2 signaling-related proteins expression were analyzed to explore the potential mechanism underlying cardiomyocyte ferroptosis-mediated cardiovascular disease development. RESULTS: We demonstrated that Nrf2 downregulation in myocardial tissue, accompanied by ferroptotic events and changes in xCT and GPX4 expressions, induced cardiomyocyte ferroptosis and myocardial injury after myocardial infarction. These events, including ferroptosis and changes in Nrf2, xCT, and GPX4 expressions, were improved by ferrostatin-1 in vivo and in vitro. Besides, Nrf2 deficiency or inhibition aggravated myocardial infarction-induced cardiomyocyte ferroptosis by decreasing xCT and GPX4 expressions in vivo and in vitro. Moreover, ferrostatin-1 directly targeted Nrf2, as evidenced by surface plasmon resonance analysis. CONCLUSIONS: These results indicated that myocardial infarction is accompanied by cardiomyocyte ferroptosis and that Nrf2 signaling plays a crucial part in regulating cardiomyocyte ferroptosis after myocardial infarction.


Subject(s)
Ferroptosis , Myocardial Infarction , Animals , Mice , Myocytes, Cardiac , NF-E2-Related Factor 2 , Myocardial Infarction/drug therapy
4.
J Ginseng Res ; 46(1): 156-166, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35058732

ABSTRACT

BACKGROUND: Panax ginseng Meyer (P. ginseng), a herb distributed in Korea, China and Japan, exerts benefits on diverse inflammatory conditions. However, the underlying mechanism and active ingredients remains largely unclear. Herein, we aimed to explore the active ingredients of P. ginseng against inflammation and elucidate underlying mechanisms. METHODS: Inflammation model was constructed by lipopolysaccharide (LPS) in C57BL/6 mice and RAW264.7 macrophages. Molecular docking, molecular dynamics, surface plasmon resonance imaging (SPRi) and immunofluorescence were utilized to predict active component. RESULTS: P. ginseng significantly inhibited LPS-induced lung injury and the expression of pro-inflammatory factors, including TNF-α, IL-6 and IL-1ß. Additionally, P. ginseng blocked fluorescence-labeled LPS (LPS488) binding to the membranes of RAW264.7 macrophages, the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). Furthermore, molecular docking demonstrated that ginsenoside Ro (GRo) docked into the LPS binding site of toll like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD2) complex. Molecular dynamic simulations showed that the MD2-GRo binding conformation was stable. SPRi demonstrated an excellent interaction between TLR4/MD2 complex and GRo (KD value of 1.16 × 10-9 M). GRo significantly inhibited LPS488 binding to cell membranes. Further studies showed that GRo markedly suppressed LPS-triggered lung injury, the transcription and secretion levels of TNF-α, IL-6 and IL-1ß. Moreover, the phosphorylation of NF-κB and MAPKs as well as the p65 subunit nuclear translocation were inhibited by GRo dose-dependently. CONCLUSION: Our results suggest that GRo exerts anti-inflammation actions by direct inhibition of TLR4 signaling pathway.

5.
Front Pharmacol ; 12: 644116, 2021.
Article in English | MEDLINE | ID: mdl-34084132

ABSTRACT

Cardiovascular disease, a disease caused by many pathogenic factors, is one of the most common causes of death worldwide, and oxidative stress plays a major role in its pathophysiology. Tanshinone I (Tan I), a natural compound with cardiovascular protective effects, is one of the main active compounds extracted from Salvia miltiorrhiza. Here, we investigated whether Tan I could attenuate oxidative stress and oxidative stress-induced cardiomyocyte apoptosis through Nrf2/MAPK signaling in vivo and in vitro. We found that Tan I treatment protected cardiomyocytes against oxidative stress and oxidative stress-induced apoptosis, based on the detection of relevant oxidation indexes such as reactive oxygen species, superoxide dismutase, malondialdehyde, and apoptosis, including cell viability and apoptosis-related protein expression. We further examined the mechanisms underlying these effects, determining that Tan I activated nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) transcription into the nucleus and dose-dependently promoted the expression of Nrf2, while inhibiting MAPK signaling activation, including P38 MAPK, SAPK/JNK, and ERK1/2. Nrf2 inhibitors in H9C2 cells and Nrf2 knockout mice demonstrated aggravated oxidative stress and oxidative stress-induced cardiomyocyte injury; Tan I treatment suppressed these effects in H9C2 cells; however, its protective effect was inhibited in Nrf2 knockout mice. Additionally, the analysis of surface plasmon resonance demonstrated that Tan I could directly target Nrf2 and act as a potential Nrf2 agonist. Collectively, these data strongly indicated that Tan I might inhibit oxidative stress and oxidative stress-induced cardiomyocyte injury through modulation of Nrf2 signaling, thus supporting the potential therapeutic application of Tan I for oxidative stress-induced CVDs.

6.
Bioorg Med Chem Lett ; 43: 128045, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33865968

ABSTRACT

Inhibiting myocardial fibrosis can help prevent cardiovascular diseases, including heart failure. Magnolol (Mag), a natural component of Magnoliae officinalis, has been reported to inhibit fibrosis. However, the mechanism of Mag activity and its effects on myocardial fibrosis remain unclear. Here, we investigated the involvement of ALDH2, an endogenous protective agent against myocardial fibrosis, in the Mag-mediated inhibition of cardiac fibroblast proliferation and collagen synthesis. We found that Mag significantly inhibited cardiac fibroblast proliferation and collagen synthesis, based on the results of MTT, EdU and western blot assays. Moreover, molecular docking, molecular dynamics simulation and surface plasmon resonance (SPR) assays showed that Mag could bind directly and stably to ALDH2. Further analysis of the mechanism of these effects indicated that treatment with Mag dose-dependently enhanced ALDH2 activity without altering protein expression. Mag could enhance the activity of recombinant human ALDH2 proteins with a half-maximal effective concentration of 5.79 × 10-5 M. In addition, ALDH2 activation via Alda-1 inhibited cardiac fibroblast proliferation and collagen synthesis, while ALDH2 inhibition via daidzin partially blocked the suppressive effects of Mag. In summary, Mag may act as a natural ALDH2 agonist and inhibit cardiac fibroblast proliferation and collagen synthesis.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Collagen/antagonists & inhibitors , Fibroblasts/drug effects , Lignans/pharmacology , Myocytes, Cardiac/drug effects , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Biphenyl Compounds/chemistry , Biphenyl Compounds/isolation & purification , Cell Proliferation/drug effects , Collagen/biosynthesis , Dose-Response Relationship, Drug , Fibroblasts/metabolism , Humans , Lignans/chemistry , Lignans/isolation & purification , Magnolia/chemistry , Molecular Structure , Myocytes, Cardiac/metabolism , Structure-Activity Relationship
7.
J Ginseng Res ; 44(2): 258-266, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32148407

ABSTRACT

BACKGROUND: Oxidative stress-induced cardiomyocytes apoptosis is a key pathological process in ischemic heart disease. Glutathione reductase (GR) reduces glutathione disulfide to glutathione (GSH) to alleviate oxidative stress. Ginsenoside Rb1 (GRb1) prevents the apoptosis of cardiomyocytes; however, the role of GR in this process is unclear. Therefore, the effects of GRb1 on GR were investigated in this study. METHODS: The antiapoptotic effects of GRb1 were evaluated in H9C2 cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, annexin V/propidium iodide staining, and Western blotting. The antioxidative effects were measured by a reactive oxygen species assay, and GSH levels and GR activity were examined in the presence and absence of the GR inhibitor 1,3-bis-(2-chloroethyl)-1-nitrosourea. Molecular docking and molecular dynamics simulations were used to investigate the binding of GRb1 to GR. The direct influence of GRb1 on GR was confirmed by recombinant human GR protein. RESULTS: GRb1 pretreatment caused dose-dependent inhibition of tert-butyl hydroperoxide-induced cell apoptosis, at a level comparable to that of the positive control N-acetyl-L-cysteine. The binding energy between GRb1 and GR was positive (-6.426 kcal/mol), and the binding was stable. GRb1 significantly reduced reactive oxygen species production and increased GSH level and GR activity without altering GR protein expression in H9C2 cells. Moreover, GRb1 enhanced the recombinant human GR protein activity in vitro, with a half-maximal effective concentration of ≈2.317 µM. Conversely, 1,3-bis-(2-chloroethyl)-1-nitrosourea co-treatment significantly abolished the GRb1's apoptotic and antioxidative effects of GRb1 in H9C2 cells. CONCLUSION: GRb1 is a potential natural GR agonist that protects against oxidative stress-induced apoptosis of H9C2 cells.

8.
J Ethnopharmacol ; 240: 111937, 2019 Aug 10.
Article in English | MEDLINE | ID: mdl-31075381

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Atopic dermatitis (AD), a disorder prevalent during childhood and adulthood, seriously affects the patient's quality of life. Although Huang-Lian-Jie-Du-Tang (HLJDT) has shown anti-inflammatory effects in previous studies, its effects and mechanism of action underlying AD disorder are still largely unknown. OBJECTIVE: This study explored the anti-inflammatory and immunomodulatory effects of HLJDT on the AD-like dermal disorder, induced in vitro by lipopolysaccharide (LPS)-triggered inflammation, and in vivo by 2,4-dinitrochlorobenzene (DNCB). MATERIALS AND METHODS: In vivo HLJDT effects were investigated by determining the severity of dermatitis, which consisted of observing signs of skin lesions, visually and through haematoxylin and eosin (HE) staining, in mouse ears and dorsal skin, measuring serum levels of interleukin (IL)-1α, IL-1ß, IL-2, IL-4, IL-5, IL-6, interferon (IFN)-γ, the tumour necrosis factor (TNF)-α, and determining the splenic index, number of splenic CD4+/CD8+ T-lymphocytes, as well as the phosphorylation levels of mitogen-activated protein kinases (including MAPKs-p38, ERK, and JNK), IκB-α, and nuclear factor kappa B (NF-κB) (p65) within dermal lesions. Morphological changes in LPS-induced inflammation were observed under a microscope, and ELISA and qPCR assays were used to measure IL-1α, IL-1ß, IL-6, and TNF-α expression levels. The protein expression levels of P-ERK/ERK, P-p38/p38, P-JNK/JNK, P-IKß-α, and P-p65 were measured through western blotting. Additionally, p65 expression was assessed by immunofluorescence, and LPS binding to RAW264.7 cell membrane was studied with laser confocal microscopy. RESULTS: HLJDT could remarkably mitigate DNCB-induced AD-like lesion symptoms, alleviating inflammatory mediator infiltration in mouse ears and dorsal skin tissue, down-regulating serum expression levels of IL-1α, IL-1ß, IL-2, IL-4, IL-5, IL-6, IFN-γ, and TNF-α, normalising the splenic CD4+/CD8+ T-lymphocyte ratio, and inactivating MAPKs (including p38, ERK, and JNK), IκB-α, and NF-κB (p65) in dorsal skin. Furthermore, HLJDT inhibited LPS-induced differentiation of RAW264.7 cells, as evidenced by the decreased protein and mRNA expression of IL-1α, IL-1ß, IL-6, and TNF-α. Additionally, it decreased ERK, p38, JNK, IKß-α, and p65 phosphorylation levels in the MAPKs/NF-κB pathway, inhibited p65 nuclear translocation, and reduced LPS binding to the RAW264.7 cell membrane. CONCLUSIONS: HLJDT significantly improved AD-like symptoms via inhibition of the MAPKs/NF-κB pathway. Therefore, administration of HLJDT might be a potential treatment for AD in the clinical setting.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Dermatitis, Atopic/drug therapy , Drugs, Chinese Herbal/therapeutic use , Immunologic Factors/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , CD4-CD8 Ratio , Cytokines/immunology , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/immunology , Dinitrochlorobenzene , Drugs, Chinese Herbal/pharmacology , Immunologic Factors/pharmacology , Lipopolysaccharides , Male , Mice , Mitogen-Activated Protein Kinases/immunology , NF-kappa B/immunology , RAW 264.7 Cells , Skin/drug effects , Skin/immunology
9.
Eur J Pharmacol ; 853: 93-102, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30878387

ABSTRACT

Vascular smooth muscle cell (VSMC) proliferation plays a critical role in arterial remodeling during various vascular diseases including atherosclerosis and hypertension. Tanshinone I, a major component of Salvia miltiorrhiza, exerts protective effects against cardiovascular diseases. In this study, we investigated the effects of tanshinone I on VSMC proliferation, as well as the underlying mechanisms. We found that this compound inhibited the proliferation of VSMCs in a dose-dependent manner, based on 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and 5-ethynyl-2'-deoxyuridine (EdU) assays. Western blotting demonstrated that tanshinone I inhibited the expression of proliferation-related proteins, including cyclin-dependent kinase 4 (CDK4), cyclin D3, and cyclin D1, in a dose-dependent manner. Molecular docking showed that this compound docked to the inhibitor-binding site of the insulin-like growth factor 1 (IGF-1) receptor (IGF-1R), and the binding energy between tanshinone I and IGF-1R was -9.021 kcal/mol. Molecular dynamic simulations showed that the IGF-1R-tanshinone I binding was stable. We also found that tanshinone I dose-dependently inhibited IGF-1R activation and its downstream molecules, insulin receptor substrate (IRS)-1, phosphatidylinositol-3-Kinase (PI3K), Akt, glycogen synthase kinase-3 beta (GSK3ß), mammalian target of rapamycin (mTOR), 70S6K, and ribosomal protein S6 (RPS6). Notably, activation of IGF-1R by recombinant IGF-1 rescued the activity of IGF-1R and its downstream molecules, and the proliferation of tanshinone I-treated VSMC. In addition, blocking PI3K signaling with LY294002 showed the important role of this pathway in tanshinone I-mediated suppression of VSMC proliferation. Collectively, these data demonstrated that tanshinone I might inhibit VSMC proliferation by inhibiting IGF-1R/PI3K signaling.


Subject(s)
Abietanes/pharmacology , Muscle, Smooth, Vascular/cytology , Phosphatidylinositol 3-Kinases/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction/drug effects , Abietanes/metabolism , Cell Proliferation/drug effects , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Conformation , Receptor, IGF Type 1/chemistry
10.
J Ethnopharmacol ; 232: 62-72, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30553869

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatocellular carcinoma (HCC) is among the most common malignancies. Signal transducer and activator of transcription 3 (STAT3), with abnormal expression and constitutive activation, has been reported to promote proliferation, metastasis, survival and angiogenesis of HCC cells. Rheum palmatum (RP), a traditional Chinese medicinal herb, exhibited tumor-suppressing effects in multiple human cancers, but its potential functions in HCC remain unexplored. AIM OF THE STUDY: This study aimed to examine the involvement of STAT3 signaling in the anti-HCC effects of RP extract. MATERIALS AND METHODS: SMMC-7721 and HepG2 HCC cell lines were treated with RP extract for 24 h, and then viability, migration, and invasion of HCC cells and angiogenesis of human umbilical vein endothelial cells (HUVECs) were analyzed using MTS, wound-healing, Transwell invasion and tube formation assays, respectively. Western blotting and immunohistochemistry (IHC) were used to examine the activation of key molecules in STAT3 signaling, including STAT3, JAK2, and Src. Additionally, we explored the in vivo antitumor effects of RP extract in a xenograft tumor nude mouse model of HCC. RESULTS: The result showed that RP extract reduced viability, migration, and invasion of SMMC-7721 and HepG2 cells and angiogenesis of HUVECs. It suppressed the phosphorylation of STAT3 and its upstream kinases including JAK2 and Src. In addition, RP extract treatment downregulated STAT3 target genes, including survivin, Bcl-xL, Mcl-1, Bcl-2, MMP-2, MMP-9, Cyclin D1, CDK4, c-Myc, and VEGF-C. Furthermore, RP extract suppressed the xenograft tumor growth and activation of STAT3 in xenograft tumor mice. CONCLUSION: Collectively, the results showed that RP extract prevented HCC progression by inhibiting STAT3, and might be useful for the treatment of HCC.


Subject(s)
Antineoplastic Agents, Phytogenic , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Plant Extracts , Rheum , STAT3 Transcription Factor/metabolism , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/physiology , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice, Inbred BALB C , Mice, Nude , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Signal Transduction/drug effects , Wound Healing/drug effects
11.
Food Nutr Res ; 622018.
Article in English | MEDLINE | ID: mdl-30349447

ABSTRACT

BACKGROUND: Oxidative stress-induced apoptosis plays an important role in the development of heart failure. 3,5-Dicaffeoylquinic acid (3,5-diCQA), a phenolic compound, has shown protective effects against oxidative stress in many diseases. OBJECTIVE: The objective of this study was to investigate the anti-apoptosis potential of 3,5-diCQA in cardiomyocyte cells under oxidative stress and explore its underlying mechanisms. DESIGN: A model of tert-butyl hydroperoxide (TBHP)-induced apoptosis in a cardiomyocyte cell line (H9C2) was established. Cell viabilities on cell lines were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay. The apoptosis was measured by hoechst33342 and propidium iodide (PI) fluorescent staining. PI (in red) stained the regions of cell apoptosis; Hoechet33342 (in blue) stained the nuclei. The Western blot was used to determine the expressions of related proteins such as p-PI3K: phosphorylated phosphatidylinositol-3-kinase (p-PI3K), phosphorylated Serine and Threonine kinase AKT (p-AKT), p-PTEN, Bcl-2, Bax, and caspase-3. Afterward, a PI3K inhibitor, LY294002, was applied to confirm the influence of the PI3K/Akt pathway on TBHP-treated cells of 3,5-diCQA. Then, H9C2 cells were pre-incubated with 3,5-diCQA alone to determine if the expression of activated PI3K/Akt signaling was mediated by 3,5-diCQA in H9C2 cells. RESULTS: The results showed that TBHP resulted in an increase in cardiomyocyte apoptosis, whereas 3,5-diCQA treatment protected cells from TBHP-induced apoptosis in a dose-dependent manner. Moreover, 3,5-diCQA decreased expressions of Bax and caspase-3 but increased the phosphorylation levels of PI3K and Akt in TBHP-treated cells, which are the key molecules mediating cell survival, whereas phosphatase and tensin homologue deleted on chromosome 10 (PTEN) phosphorylation was unchanged. Importantly, pre-incubation with a PI3K inhibitor (LY294002) partly abolished the anti-apoptosis effects of 3,5-diCQA. Further, 3,5-diCQA enhanced the phosphorylation levels of PI3K and Akt in H9C2 cells directly, while LY294002 attenuated the effects of 3,5-diCQA on PI3K and Akt. CONCLUSION: This study suggested that 3,5-diCQA rescued myocardium from apoptosis by increasing the activation of the PI3K/Akt signaling pathway.

12.
Front Pharmacol ; 9: 1059, 2018.
Article in English | MEDLINE | ID: mdl-30298006

ABSTRACT

Vascular smooth muscle cell (VSMC) proliferation and migration play a critical role in the development of arterial remodeling during various vascular diseases including atherosclerosis, hypertension, and related diseases. Luteolin is a food-derived flavonoid that exerts protective effects on cardiovascular diseases. Here, we investigated whether transforming growth factor-ß receptor 1 (TGFBR1) signaling underlies the inhibitory effects of luteolin on VSMC proliferation and migration. We found that luteolin reduced the proliferation and migration of VSMCs, specifically A7r5 and HASMC cells, in a dose-dependent manner, based on MTS and EdU, and Transwell and wound healing assays, respectively. We also demonstrated that it inhibited the expression of proliferation-related proteins including PCNA and Cyclin D1, as well as the migration-related proteins MMP2 and MMP9, in a dose-dependent manner by western blotting. In addition, luteolin dose-dependently inhibited the phosphorylation of TGFBR1, Smad2, and Smad3. Notably, adenovirus-mediated overexpression of TGFBR1 enhanced TGFBR1, Smad2, and Smad3 activation in VSMCs and partially blocked the inhibitory effect of luteolin on TGFBR1, Smad2, and Smad3. Moreover, overexpression of TGFBR1 rescued the inhibitory effects of luteolin on the proliferation and migration of VSMCs. Additionally, molecular docking showed that this compound could dock onto an agonist binding site of TGFBR1, and that the binding energy between luteolin and TGFBR1 was -10.194 kcal/mol. Simulations of molecular dynamics showed that TGFBR1-luteolin binding was stable. Collectively, these data demonstrated that luteolin might inhibit VSMC proliferation and migration by suppressing TGFBR1 signaling.

13.
J Ethnopharmacol ; 222: 1-10, 2018 Aug 10.
Article in English | MEDLINE | ID: mdl-29698775

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Si-Ni-San (SNS) is a well-known decoction in traditional Chinese medicine. Although studies have indicated that the anti-inflammatory and anti-allergic properties of SNS and its components can account for their therapeutic effects, the role and mechanism of SNS in treating skin dysfunction remain unclear. AIM OF THE STUDY: Atopic dermatitis (AD), a disorder known for its prevalence in infants and adults, severely influences the quality of life of affected patients. In this study, we aimed to investigate the anti-inflammatory and immune response modulations of SNS in 2,4-dinitrochlorobenzene (DNCB)-induced AD-like skin dysfunction. MATERIALS AND METHODS: Dermatitis was induced in Kunming mice by the topical application of DNCB. SNS or dexamethasone (positive control) was topically applied every day over the course of the 21-day study. The following were assessed: dermatitis severity scores; ear and dorsal skin haematoxylin and eosin staining; interleukin (IL)- 1α, IL-1ß, IL-2, IL-4, IL-6, and tumour necrosis factor (TNF)-α cytokine levels in the serum; spleen index; spleen CD4 + /CD8 + T lymphocyte ratio; and phosphorylation levels of mitogen-activated protein kinases (MAPKs- p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK)), IκB-α, and nuclear factor (NF)-κB (p65) in skin lesions. RESULTS: SNS significantly alleviated the symptoms of AD-like lesions induced by DNCB, decreased the infiltration of inflammatory cells in the ear and dorsal tissues, suppressed the increased cytokine levels in the serum, reduced the CD4 + /CD8 +T lymphocyte ratio in the spleen, and downregulated the activation of MAPKs, IκB-α, and NF-κB (p65) in the dorsal skin. The effects were similar to those of dexamethasone. CONCLUSIONS: SNS alleviated the DNCB-induced AD-like skin dysfunction in mice through anti-inflammatory and immune system modulation, indicating that SNS shows potential for AD treatment in clinical settings.


Subject(s)
Anti-Allergic Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Immunologic Factors/therapeutic use , Animals , CD4-CD8 Ratio , Cytokines/blood , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Dinitrochlorobenzene , Male , Mice , Phytotherapy , Skin/drug effects , Skin/immunology , Skin/pathology , Spleen/drug effects , Spleen/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...