Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 383
Filter
1.
Int J Ophthalmol ; 17(3): 596-602, 2024.
Article in English | MEDLINE | ID: mdl-38721520

ABSTRACT

AIM: To explore the clinical efficacy and safety of stromal lenticule addition keratoplasty (SLAK) with corneal crosslinking (CXL) on patients with corneal ectasia secondary to femtosecond laser-assisted in situ keratomileusis (FS-LASIK). METHODS: A series of 5 patients undertaking SLAK with CXL for the treatment of corneal ectasia secondary to FS-LASIK were followed for 4-9mo. The lenticules were collected from patients undertaking small incision lenticule extraction (SMILE) for the correction of myopia. Adding a stromal lenticule was aimed at improving the corneal thickness for the safe application of crosslinking and compensating for the thin cornea to improve its mechanical strength. RESULTS: All surgeries were conducted successfully with no significant complications. Their best corrected visual acuity (BCVA) ranged from 0.05 to 0.8-2 before surgery. The pre-operational total corneal thickness ranged from 345-404 µm and maximum keratometry (Kmax) ranged from 50.8 to 86.3. After the combination surgery, both the corneal keratometry (range 55.9 to 92.8) and total corneal thickness (range 413-482 µm) significantly increased. Four out of 5 patients had improvement of corneal biomechanical parameters (reflected by stiffness parameter A1 in Corvis ST). However, 3 patients showed decreased BCVA after surgery due to the development of irregular astigmatism and transient haze. Despite the onset of corneal edema right after SLAK, the corneal topography and thickness generally stabilized after 3mo. CONCLUSION: SLAK with CXL is a potentially beneficial and safe therapy for advanced corneal ectasia. Future work needs to address the poor predictability of corneal refractometry and compare the outcomes of different surgical modes.

2.
Front Oncol ; 14: 1386772, 2024.
Article in English | MEDLINE | ID: mdl-38737903

ABSTRACT

Tumor vasculature is pivotal in regulating tumor perfusion, immune cell infiltration, metastasis, and invasion. The vascular status of the tumor is intricately linked to its immune landscape and response to immunotherapy. Vessel co-option means that tumor tissue adeptly exploits pre-existing blood vessels in the para-carcinoma region to foster its growth rather than inducing angiogenesis. It emerges as a significant mechanism contributing to anti-angiogenic therapy resistance. Different from angiogenic tumors, vessel co-option presents a distinctive vascular-immune niche characterized by varying states and distribution of immune cells, including T-cells, tumor-associated macrophages, neutrophils, and hepatic stellate cells. This unique composition contributes to an immunosuppressive tumor microenvironment that is crucial in modulating the response to cancer immunotherapy. In this review, we systematically reviewed the evidence and molecular mechanisms of vessel co-option in liver cancer, while also exploring its implications for anti-angiogenic drug resistance and the immune microenvironment, to provide new ideas and clues for screening patients with liver cancer who are effective in immunotherapy.

3.
J Lipid Res ; : 100559, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729351

ABSTRACT

Adipogenesis is one of the major mechanisms for adipose tissue expansion, during which spindle-shaped mesenchymal stem cells commit to the fate of adipocyte precursors and differentiate into round-shaped fat-laden adipocytes. Here, we investigated the lipidomic profile dynamics of ex vivo differentiated brown and white adipocytes derived from the stromal vascular fractions of interscapular brown (iBAT) and inguinal white adipose tissues (iWAT). We showed that sphingomyelin was specifically enriched in terminally differentiated brown adipocytes, but not white adipocytes. In line with this, freshly isolated adipocytes of iBAT showed higher sphingomyelin content than those of iWAT. Upon cold exposure, sphingomyelin abundance in iBAT gradually decreased in parallel with reduced sphingomyelin synthase 1 protein levels. Cold-exposed animals treated with an inhibitor of sphingomyelin hydrolases failed to maintain core body temperature and showed reduced oxygen consumption and iBAT UCP1 levels. Conversely, blockade of sphingomyelin synthetic enzymes resulted in enhanced non-shivering thermogenesis, reflected by elevated body temperature and UCP1 levels. Taken together, our results uncovered a relation between sphingomyelin abundance and fine-tuning of UCP1-mediated non-shivering thermogenesis.

4.
Indian J Ophthalmol ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38736244

ABSTRACT

PURPOSE: The gut microbiota might be closely related to central retinal artery occlusion (CRAO), but the causality has not been well defined. Two-sample Mendelian randomization (MR) study was used to reveal the potential causal effect between the gut microbiota and CRAO. METHODS: Data for gut microbiota were obtained from the genome-wide association studies of the Dutch Microbiome Project (DMP) (n = 7738) and the MiBioGen consortium (n = 18,340), and data on CRAO were obtained from samples of FinnGen project (546 cases and 344,569 controls). Causalities of exposures and outcomes were explored mainly using the inverse variance weighted method. In addition, multiple sensitivity analyses including MR-Egger, weighted median (WM), simple mode, weighted mode, and MR Pleiotropy RESidual Sum and Outlier were simultaneously applied to validate the final results. RESULTS: We identified three microbial pathways (two risk factors/one protective factor) and seven microbial taxa (two risk factors/five protective factors) associated with CRAO in the DMP study. Based on the data from the MiBioGen consortium, we identified seven microbial taxa (two risk factors/five protective factors) associated with CRAO, including the Eubacterium genus, which was consistently identified as a risk factor in both the DMP and the MiBioGen consortium MR analyses. CONCLUSION: Our study implicates the potential causal effects of specific microbial taxa and pathways on CRAO, potentially providing new insights into the prevention and treatment of CRAO through specific gut microbial taxa and pathway. Since our conclusion is a hypothesis derived from secondary genome-wide association studies (GWAS) data analysis, further research is needed for confirmation.

5.
Environ Int ; 187: 108719, 2024 May.
Article in English | MEDLINE | ID: mdl-38718677

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) have been shown to penetrate the blood-brain barrier (BBB) and accumulate in human brain. The BBB transmission and accumulation efficiency of PFAS, as well as the potential health risks from human co-exposure to legacy and emerging PFAS due to differences in transport efficiency, need to be further elucidated. In the present pilot study, 23 plasma samples from glioma patients were analyzed for 17 PFAS. The concentrations of PFAS in six paired brain tissue and plasma samples were used to calculate the BBB transmission efficiency of PFAS (RPFAS). This RPFAS analysis was conducted with utmost care and consideration amid the limited availability of valuable paired samples. The results indicated that low molecular weight PFAS, including short-chain and emerging PFAS, may have a greater potential for accumulation in brain tissue than long-chain PFAS. As an alternative to perfluorooctane sulfonic acid (PFOS), 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) exhibited brain accumulation potential similar to that of PFOS, suggesting it may not be a suitable substitute concerning health risk in brain. The BBB transmission efficiencies of perfluorooctanoic acid, PFOS, and 6:2 Cl-PFESA showed similar trends with age, which may be an important factor influencing the entry of exogenous compounds into the brain. A favorable link between perfluorooctane sulfonamide (FOSA) and the development and/or progression of glioma may be implicated by a strong positive correlation (r2 = 0.94; p < 0.01) between RFOSA and Ki-67 (a molecular marker of glioma). However, a causal relationship between RFOSA and glioma incidence were not established in the present study. The present pilot study conducted the first examination of BBB transmission efficiency of PFAS from plasma to brain tissue and highlighted the importance of reducing and/or controlling exposure to PFAS.


Subject(s)
Blood-Brain Barrier , Fluorocarbons , Humans , Blood-Brain Barrier/metabolism , Pilot Projects , Fluorocarbons/blood , Middle Aged , Female , Adult , Male , Glioma , Aged , Environmental Pollutants/blood , Environmental Exposure , Alkanesulfonic Acids/blood , Brain/metabolism
6.
Chemosphere ; 358: 142277, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719118

ABSTRACT

Peracetic acid (PAA) has garnered significant attention as a novel disinfectant owing to its remarkable oxidative capacity and minimal potential to generate byproducts. In this study, we prepared a novel catalyst, denoted as cobalt modified nitrogen-doped carbon nanotubes (Co@N-CNTs), and evaluated it for PAA activation. Modification with cobalt nanoparticles (∼4.8 nm) changed the morphology and structure of the carbon nanotubes, and greatly improved their ability to activate PAA. Co@N-CNTs/PAA catalytic system shows outstanding catalytic degradation ability of antiviral drugs. Under neutral conditions, with a dosage of 0.05 g/L Co@N-CNT-9.8 and 0.25 mM PAA, the removal efficiency of acyclovir (ACV) reached 98.3% within a mere 10 min. The primary reactive species responsible for effective pollutant degradation were identified as acetylperoxyl radicals (CH3C(O)OO•) and acetyloxyl radicals (CH3C(O)O•). In addition, density functional theory (DFT) proved that Co nanoparticles, as the main catalytic sites, were more likely to adsorb PAA and transfer more electrons than N-doped graphene. This study explored the feasibility of PAA degradation of antiviral drugs in sewage, and provided new insights for the application of heterogeneous catalytic PAA in environmental remediation.


Subject(s)
Antiviral Agents , Cobalt , Nanotubes, Carbon , Nitrogen , Peracetic Acid , Nanotubes, Carbon/chemistry , Nitrogen/chemistry , Cobalt/chemistry , Peracetic Acid/chemistry , Catalysis , Antiviral Agents/chemistry , Water Pollutants, Chemical/chemistry , Acyclovir/chemistry , Adsorption
7.
Sci Total Environ ; 931: 172978, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38705295

ABSTRACT

Bisphenol analogues (BPs) are commonly found in riverine and coastal waters. However, the lack of a reliable and robust passive sampling method has hindered our ability to monitor these compounds in aquatic systems. The study developed a novel organic-diffusive gradients in thin film (o-DGT) sampler based on stainless steel mesh membrane, polyacrylamide diffusive gel, and hydrophilic-lipophilic balance (HLB) binding gel. This innovative design tackled issues of filter membrane sorption in traditional o-DGT devices and potential gel damage in membrane-less o-DGT devices, showing promising application prospects. The mass accumulation of 15 target BPs was linear over 10 days in both freshwater (r2 ≥ 0.92) and seawater (r2 ≥ 0.94), with no saturation observed. The diffusion coefficients (D) through polyacrylamide diffusive gels ranged from 4.04 × 10-6 to 5.77 × 10-6 cm2 s-1 in freshwater and from 1.74 × 10-6 to 4.69 × 10-6 cm2 s-1 in seawater for the target BPs (except for bisphenol PH) at 22 °C. The D values of the target BPs in seawater were lower than those in freshwater due to the high salinity in seawater (35 ‰). The o-DGT samplers demonstrated good integrity in field applications. The total concentrations of the eight detected BPs ranged from 9.2 to 323 ng L-1, which was consistent with the measurements obtained by grab sampling. Among all BPs, bisphenol S, bisphenol F, and bisphenol A were consistently detected at all sites using both sampling methods. The concentrations of some novel BPs in coastal water measured by grab sampling were comparable to those measured in rivers, suggesting the need to strengthen pollution control of BPs in coastal areas. These results indicate that the o-DGT passive sampling method developed in the present study can be effectively used for monitoring BPs in freshwater and coastal environments.

8.
Int J Parasitol ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38604548

ABSTRACT

Wild rhesus macaques are a potential source of zoonotic parasites for humans, and Entamoeba spp. are common intestinal parasites. To investigate the prevalence of Entamoeba in wild rhesus macaques in China and explore the genetic differentiation of the potentially pathogenic species Entamoeba nuttalli, a total of 276 fecal samples from five populations at high altitudes (HAG, 2,800-4,100 m above sea level) and four populations at low altitudes (LAG, 5-1,000 m above sea level) were collected. PCR methods based on the ssrRNA gene were used to detect Entamoeba infection. Genotyping of E. nuttalli was performed based on six tRNA-linked short tandem repeat (STR) loci for further genetic analyses. The results revealed that Entamoeba infection (69.2%) was common in wild rhesus macaques in China, especially in LAG which had a significantly higher prevalence rate than that in HAG (P < 0.001). Three zoonotic species were identified: Entamoeba chattoni (60.9%) was the most prevalent species and distributed in all the populations, followed by Entamoeba coli (33.3%) and Entamoeba nuttalli (17.4%). In addition, a novel Entamoeba ribosomal lineage named RL13 (22.8%) was identified, and phylogenetic analysis revealed a close genetic relationship between RL13 and Entamoeba. hartmanni. Genotyping of E. nuttalli obtained 24 genotypes from five populations and further analysis showed E. nuttalli had a high degree of genetic differentiation (FST > 0.25, Nm < 1) between the host populations. The result of analysis of molecular variance (AMOVA) revealed that observed genetic differences mainly originate from differences among populations (FST = 0.91). Meanwhile, the phylogenetic tree showed that these genotypes of E. nuttalli were clustered according to geographical populations, indicating a significant phylogeographic distribution pattern. Considering the potential pathogenicity of E. nuttalli, attention should be paid to its risk of zoonotic transmission.

9.
Curr Med Sci ; 44(2): 450-461, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38639827

ABSTRACT

OBJECTIVE: Cymbopogon citratus (DC.) Stapf is a medicinal and edible herb that is widely used for the treatment of gastric, nervous and hypertensive disorders. In this study, we investigated the cardioprotective effects and mechanisms of the essential oil, the main active ingredient of Cymbopogon citratus, on isoproterenol (ISO)-induced cardiomyocyte hypertrophy. METHODS: The compositions of Cymbopogon citratus essential oil (CCEO) were determined by gas chromatography-mass spectrometry. Cardiomyocytes were pretreated with 16.9 µg/L CCEO for 1 h followed by 10 µmol/L ISO for 24 h. Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated. Subsequently, transcriptome sequencing (RNA-seq) and target verification were used to further explore the underlying mechanism. RESULTS: Our results showed that the CCEO mainly included citronellal (45.66%), geraniol (23.32%), and citronellol (10.37%). CCEO inhibited ISO-induced increases in cell surface area and protein content, as well as the upregulation of fetal gene expression. Moreover, CCEO inhibited ISO-induced NLRP3 inflammasome expression, as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3, ASC, CASP1, GSDMD, and IL-1ß, as well as reduced protein levels of NLRP3, ASC, pro-caspase-1, caspase-1 (p20), GSDMD-FL, GSDMD-N, and pro-IL-1ß. The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes. Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1, Sdhd, mt-Cytb, Uqcrq, and mt-Atp6 but had no obvious effects on mt-Col expression. CONCLUSION: CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.


Subject(s)
Cymbopogon , Oils, Volatile , Oils, Volatile/pharmacology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Cymbopogon/chemistry , Cymbopogon/metabolism , Isoproterenol , Myocytes, Cardiac/metabolism , Oxidative Phosphorylation , RNA, Messenger/metabolism , Hypertrophy/chemically induced , Hypertrophy/drug therapy , Hypertrophy/metabolism
10.
Phytomedicine ; 129: 155597, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643713

ABSTRACT

BACKGROUND: Sepsis-induced cardiac dysfunction (SICD) is a serious complication of sepsis that is associated with increased mortality. Ferroptosis has been reported in the SICD. TaoHe ChengQi decoction (THCQD), a classical traditional Chinese medicinal formula, has multiple beneficial pharmacological effects. The potential effects of THCQD on the SICD remain unknown. PURPOSE: To investigate the effect of THCQD on SICD and explore whether this effect is related to the regulation of myocardial ferroptosis through nuclear factor erythroid 2-related factor 2 (Nrf2) activation. METHODS: We induced sepsis in a mouse model using cecal ligation and puncture (CLP) and administered THCQD (2 and 4 g/kg) and dexamethasone (40 mg/kg). Mice mortality was recorded and survival curves were plotted. Echocardiography, hematoxylin and eosin staining, and analysis of serum myocardial injury markers and inflammatory factors were used to evaluate cardiac pathology. Myocardial ferroptosis was detected by quantifying specific biomarker content and protein levels. Through HPLC-Q-Exactive-MS analysis, we identified the components of the THCQD. Network pharmacology analysis and Cellular Thermal Shift Assay (CETSA) were utilized to predict the targets of THCQD for treating SICD. We detected the expression of Nrf2 using Western blotting or immunofluorescence. An RSL3-induced ferroptosis model was established using neonatal rat cardiomyocytes (NRCMs) to further explore the pharmacological mechanism of THCQD. In addition to measuring cell viability, we observed changes in NRCM mitochondria using electron microscopy and JC-1 staining. NRF2 inhibitor ML385 and Nrf2 knockout mice were used to validate whether THCQD exerted protective effects against SICD through Nrf2-mediated ferroptosis signaling. RESULTS: THCQD reduced mortality in septic mice, protected against CLP-induced myocardial injury, decreased systemic inflammatory response, and prevented myocardial ferroptosis. Network pharmacology analysis and CETSA experiments predicted that THCQD may protect against SICD by activating the Nrf2 signaling pathway. Western blotting and immunofluorescence showed that THCQD activated Nrf2 in cardiac tissue. THCQDs consistently mitigated RSL3-induced ferroptosis in NRCM, which is related to Nrf2. Furthermore, the pharmacological inhibition of Nrf2 and genetic Nrf2 knockout partially reversed the protective effects of THCQD on SICD and ferroptosis. CONCLUSION: The effect of THCQD on SICD was achieved by activating Nrf2 and its downstream pathways.

11.
Colloids Surf B Biointerfaces ; 238: 113887, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581835

ABSTRACT

Alzheimer's disease (AD) is complex and multifactorial, and its pathogenesis involves multiple factors and processes. This study pioneered the in situ growth of cerium oxide nanoparticles on macrophage membranes (Ce-RAW). Further, carbon quantum dots (CQD) were biomimetically modified by Ce-RAW, leading to the synthesis of a multifunctional nanocomposite (CQD-Ce-RAW). Within the framework of this research, CQD-Ce-RAW was strategically combined with photothermal therapy (PTT), aiming to achieve a more significant therapeutic effect. The macrophage membrane confers the system with anti-phagocytic and anti-inflammatory biological functions. More importantly, the ultra-small size of cerium oxide grown on the membrane acts as a reactive oxygen species (ROS) scavenger and alleviates the degree of oxidative stress. Meanwhile, CQD as a photosensitizer helps dissociate amyloid-ß (Aß) aggregates and chelates excess copper ions, thus further inhibiting Aß aggregation. Cell experiments showed that CQD-Ce-RAW combined with PTT could effectively degrade and inhibit the aggregation of Aß, remove ROS, and improve cell survival rate. The results of in vivo photothermal experiments demonstrated that near-infrared light enhanced the efficiency of drug penetration through the blood-brain barrier and facilitated its accumulation in brain tissue. This comprehensive therapeutic approach can intervene in the disease progression from multiple pathways, providing a new prospect for treating AD.


Subject(s)
Alzheimer Disease , Biofilms , Cerium , Nanoparticles , Photothermal Therapy , Reactive Oxygen Species , Cerium/chemistry , Cerium/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/therapy , Alzheimer Disease/pathology , Animals , Mice , Nanoparticles/chemistry , Biofilms/drug effects , Reactive Oxygen Species/metabolism , Quantum Dots/chemistry , Amyloid beta-Peptides/metabolism , Cell Survival/drug effects , Particle Size , RAW 264.7 Cells , Humans , Surface Properties , Macrophages/metabolism , Macrophages/drug effects
12.
Front Neurosci ; 18: 1341109, 2024.
Article in English | MEDLINE | ID: mdl-38595972

ABSTRACT

Amyotrophic lateral sclerosis is a fatal, multigenic, multifactorial neurodegenerative disease characterized by upper and lower motor neuron loss. Animal models are essential for investigating pathogenesis and reflecting clinical manifestations, particularly in developing reasonable prevention and therapeutic methods for human diseases. Over the decades, researchers have established a host of different animal models in order to dissect amyotrophic lateral sclerosis (ALS), such as yeast, worms, flies, zebrafish, mice, rats, pigs, dogs, and more recently, non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms of motor neuron degeneration in ALS, contributing to the development of new promising therapeutics. In this review, we describe several common animal models in ALS, classified by the naturally occurring and experimentally induced, pointing out their features in modeling, the onset and progression of the pathology, and their specific pathological hallmarks. Moreover, we highlight the pros and cons aimed at helping the researcher select the most appropriate among those common experimental animal models when designing a preclinical ALS study.

14.
Medicine (Baltimore) ; 103(10): e36556, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457588

ABSTRACT

This study aims to develop and validate a predictive nomogram for severe postoperative pleural effusion (SPOPE) in patients undergoing hepatectomy for liver cancer. A total of 536 liver cancer patients who underwent hepatectomy at the Department of Hepatobiliary Surgery I of the Affiliated Hospital of North Sichuan Medical College from January 1, 2018, to December 31, 2022, were enrolled in a retrospective observational study and comprised the training dataset. Lasso regression and logistic regression analyses were employed to construct a predictive nomogram. The nomogram was internally validated using Bootstrapping and externally validated with a dataset of 203 patients who underwent liver cancer resection at the Department of General Surgery III of the same hospital from January 1, 2020, to December 31, 2022. We evaluated the nomogram using the receiver operating characteristic curve, calibration curve, and decision curve analysis. Variables such as drinking history, postoperative serum albumin, postoperative total bilirubin, right hepatectomy, diaphragm incision, and intraoperative blood loss were observed to be associated with SPOPE. These factors were integrated into our nomogram. The C-index of the nomogram was 0.736 (95% CI: 0.692-0.781) in the training set and 0.916 (95% CI: 0.872-0.961) in the validation set. The nomogram was then evaluated using sensitivity, specificity, positive predictive value, negative predictive value, calibration curve, and decision curve analysis. The nomogram demonstrates good discriminative ability, calibration, and clinical utility.


Subject(s)
Liver Neoplasms , Pleural Effusion , Humans , Nomograms , Hepatectomy/adverse effects , Liver Neoplasms/surgery , Retrospective Studies , Pleural Effusion/diagnosis , Pleural Effusion/etiology , Pleural Effusion/surgery
15.
Sci Adv ; 10(10): eadm7565, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38446887

ABSTRACT

Given the important advantages of the mid-infrared optical range (2.5 to 25 µm) for biomedical sensing, optical communications, and molecular spectroscopy, extending quantum information technology to this region is highly attractive. However, the development of mid-infrared quantum information technology is still in its infancy. Here, we report on the generation of a time-energy entangled photon pair in the mid-infrared wavelength band. By using frequency upconversion detection technology, we observe the two-photon Hong-Ou-Mandel interference and demonstrate the time-energy entanglement between twin photons at 3082 nm via the Franson-type interferometer, verifying the indistinguishability and nonlocality of the photons. This work is very promising for future applications of optical quantum technology in the mid-infrared band, which will bring more opportunities in the fields of quantum communication, precision sensing, and imaging.

16.
J Colloid Interface Sci ; 663: 856-868, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447400

ABSTRACT

Mitochondrial dysfunction and metal ion imbalance are recognized as pathological hallmarks of Alzheimer's Disease (AD), leading to deposition of ß-amyloid (Aß) thereby and inducing neurotoxicity, activating apoptosis, eliciting oxidative stress, and ultimately leading to cognitive impairment. In this study, the red blood cell membrane (RBC) was used as a vehicle for encapsulating carbon quantum dots (CQD) and polydopamine (PDA), creating a nanocomposite (PDA-CQD/RBC). This nanocomposite was combined with near-infrared light (NIR) for AD treatment. The RBC offers anti-immunorecognition properties to evade immune clearance, PDA exhibits enzyme-mimicking activity to mitigate oxidative stress damage, and CQD acts as a chelating agent for metal ions (Cu2+), effectively preventing Cu2+-mediated aggregation of Aß. Furthermore, the local heating induced by near-infrared laser irradiation can dismantle the formed Aß fibers and enhance the blood-brain barrier's permeability. Both in vitro and animal experiments have shown that PDA-CQD/RBC, in combination with NIR, mitigates neuroinflammation, and ameliorates behavioral deficits in mice. This approach targets multiple pathological pathways, surpassing the limitations of single-target treatments and enhancing therapeutic efficacy while decelerating disease progression.


Subject(s)
Alzheimer Disease , Indoles , Polymers , Quantum Dots , Mice , Animals , Alzheimer Disease/drug therapy , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/pathology , Amyloid beta-Peptides , Metals , Infrared Rays , Carbon/pharmacology
17.
New Phytol ; 242(2): 786-796, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38451101

ABSTRACT

Molecular genetic understanding of flowering time regulation is crucial for sorghum development. GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (SbGhd7) is one of the six classical loci conferring photoperiod sensitivity of sorghum flowering. However, its functions remain poorly studied. The molecular functions of SbGhd7 were characterized. The gene regulatory network controlled by SbGhd7 was constructed and validated. The biological roles of SbGhd7 and its major targets were studied. SbGhd7 overexpression (OE) completely prevented sorghum flowering. Additionally, we show that SbGhd7 is a major negative regulator of flowering, binding to the promoter motif TGAATG(A/T)(A/T/C) and repressing transcription of the major florigen FLOWERING LOCUS T 10 (SbFT10) and floral activators EARLY HEADING DATE (SbEhd1), FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (SbFKF1) and EARLY FLOWERING 3 (SbELF3). Reinforcing the direct effect of SbGhd7, SbEhd1 OE activated the promoters of three functional florigens (SbFT1, SbFT8 and SbFT10), dramatically accelerating flowering. Our studies demonstrate that SbGhd7 is a major repressor of sorghum flowering by directly and indirectly targeting genes for flowering activation. The mechanism appears ancient. Our study extends the current model of floral transition regulation in sorghum and provides a framework for a comprehensive understanding of sorghum photoperiod response.


Subject(s)
Sorghum , Sorghum/metabolism , Plant Proteins/metabolism , Flowers/physiology , Florigen/metabolism , Photoperiod , Gene Expression Regulation, Plant
18.
Nat Commun ; 15(1): 2367, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531868

ABSTRACT

The development of craniofacial skeletal structures is fascinatingly complex and elucidation of the underlying mechanisms will not only provide novel scientific insights, but also help develop more effective clinical approaches to the treatment and/or prevention of the numerous congenital craniofacial malformations. To this end, we performed a genome-wide analysis of RNA transcription from non-coding regulatory elements by CAGE-sequencing of the facial mesenchyme of human embryos and cross-checked the active enhancers thus identified against genes, identified by GWAS for the normal range human facial appearance. Among the identified active cis-enhancers, several belonged to the components of the PI3/AKT/mTORC1/autophagy pathway. To assess the functional role of this pathway, we manipulated it both genetically and pharmacologically in mice and zebrafish. These experiments revealed that mTORC1 signaling modulates craniofacial shaping at the stage of skeletal mesenchymal condensations, with subsequent fine-tuning during clonal intercalation. This ability of mTORC1 pathway to modulate facial shaping, along with its evolutionary conservation and ability to sense external stimuli, in particular dietary amino acids, indicate that the mTORC1 pathway may play a role in facial phenotypic plasticity. Indeed, the level of protein in the diet of pregnant female mice influenced the activity of mTORC1 in fetal craniofacial structures and altered the size of skeletogenic clones, thus exerting an impact on the local geometry and craniofacial shaping. Overall, our findings indicate that the mTORC1 signaling pathway is involved in the effect of environmental conditions on the shaping of craniofacial structures.


Subject(s)
Signal Transduction , Zebrafish , Pregnancy , Mice , Animals , Female , Humans , Proteins , Mechanistic Target of Rapamycin Complex 1 , Diet
19.
Elife ; 132024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470102

ABSTRACT

Perirenal adipose tissue (PRAT) is a unique visceral depot that contains a mixture of brown and white adipocytes. The origin and plasticity of such cellular heterogeneity remains unknown. Here, we combine single-nucleus RNA sequencing with genetic lineage tracing to reveal the existence of a distinct subpopulation of Ucp1-&Cidea+ adipocytes that arises from brown-to-white conversion during postnatal life in the periureter region of mouse PRAT. Cold exposure restores Ucp1 expression and a thermogenic phenotype in this subpopulation. These cells have a transcriptome that is distinct from subcutaneous beige adipocytes and may represent a unique type of cold-recruitable adipocytes. These results pave the way for studies of PRAT physiology and mechanisms controlling the plasticity of brown/white adipocyte phenotypes.


Subject(s)
Adipocytes, Beige , Adipose Tissue , Mice , Animals , Adipose Tissue/metabolism , Adipocytes, White , Adipocytes, Brown/metabolism , Thermogenesis/genetics , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/physiology
20.
Mol Metab ; 81: 101890, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307384

ABSTRACT

BACKGROUND & AIMS: Genome-wide studies have identified three missense variants in the human gene ACVR1C, encoding the TGF-ß superfamily receptor ALK7, that correlate with altered waist-to-hip ratio adjusted for body mass index (WHR/BMI), a measure of body fat distribution. METHODS: To move from correlation to causation and understand the effects of these variants on fat accumulation and adipose tissue function, we introduced each of the variants in the mouse Acvr1c locus and investigated metabolic phenotypes in comparison with a null mutation. RESULTS: Mice carrying the I195T variant showed resistance to high fat diet (HFD)-induced obesity, increased catecholamine-induced adipose tissue lipolysis and impaired ALK7 signaling, phenocopying the null mutants. Mice with the I482V variant displayed an intermediate phenotype, with partial resistance to HFD-induced obesity, reduction in subcutaneous, but not visceral, fat mass, decreased systemic lipolysis and reduced ALK7 signaling. Surprisingly, mice carrying the N150H variant were metabolically indistinguishable from wild type under HFD, although ALK7 signaling was reduced at low ligand concentrations. CONCLUSION: Together, these results validate ALK7 as an attractive drug target in human obesity and suggest a lower threshold for ALK7 function in humans compared to mice.


Subject(s)
Adipose Tissue , Obesity , Humans , Mice , Animals , Obesity/metabolism , Adipose Tissue/metabolism , Lipolysis/genetics , Body Fat Distribution , Diet, High-Fat/adverse effects , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...