Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 118(3): 905-919, 2024 May.
Article in English | MEDLINE | ID: mdl-38251949

ABSTRACT

Phosphate (Pi) is essential for plant growth and development. One strategy to improve Pi use efficiency is to enhance Pi remobilization among leaves. Using transcriptome analysis with first (top) and fourth (down) leaf blades from rice (Oryza sativa) in Pi-sufficient and deficient conditions, we identified 1384 genes differentially expressed among these leaf blades. These genes were involved in physiological processes, metabolism, transport, and photosynthesis. Moreover, we identified the Pi efflux transporter gene, OsPHO1;3, responding to Pi-supplied conditions among these leaf blades. OsPHO1;3 is highly expressed in companion cells of phloem, but not xylem, in leaf blades and induced by Pi starvation. Mutation of OsPHO1;3 led to Pi accumulation in second to fourth leaves under Pi-sufficient conditions, but enhanced Pi levels in first leaves under Pi-deficient conditions. These Pi accumulations in leaves of Ospho1;3 mutants resulted from induction of OsPHT1;2 and OsPHT1;8 in root and reduction of Pi remobilization in leaf blades, revealed by the decreased Pi in phloem of leaves. Importantly, lack of OsPHO1;3 caused growth defects under a range of Pi-supplied conditions. These results demonstrate that Pi remobilization is essential for Pi homeostasis and plant growth irrespective of Pi-supplied conditions, and OsPHO1;3 plays an essential role in Pi remobilization for normal plant growth.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Homeostasis , Oryza , Phloem , Phosphate Transport Proteins , Phosphates , Plant Leaves , Plant Proteins , Oryza/genetics , Oryza/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Phosphates/metabolism , Phloem/metabolism , Phloem/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , Mutation , Transcriptome
2.
J Colloid Interface Sci ; 614: 502-510, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35121508

ABSTRACT

Although the restriction of intramolecular motion has been well recognized as the fundamental of aggregation induced emission enhancement (AIEE), the regulation mechanism of gold nanoclusters (AuNCs) based AIEE system are still unclear. In this paper, we have investigated the Zn2+-induced AIEE process of thiolate ligands (i.e., cysteine, glutathione and an 8-mer peptide) protected AuNCs, which shows a pH-dependent evolution from single AuNCs to spheric aggregates to irregular network. Using photoluminescent enhancement ratio as an index, the concept of "mid-pH" is proposed to indicate the optimal pH for the formation of spheric AuNCs aggregates. Importantly, the surface ligands allow the formation of spheric AuNCs aggregates at tunable mid-pH between 5.7 and 7.5. Owing to the appropriate size and surface peptide targetability, the spheric AuNCs aggregates can be successfully screened for targeted tumor cell uptake and imaging at physiological pH. The cell uptake mechanism study showed that AuNCs aggregates was specifically recognized by arginine-glycine-aspartic acid (RGD) sequence on the ligand and integrin αvß3 on the cell surface, thus mainly through clathrin-mediated endocytosis. This work provides new sight to artificially regulate the construction of efficient cellular imaging probes.


Subject(s)
Gold , Metal Nanoparticles , Glutathione/chemistry , Gold/chemistry , Luminescence , Metal Nanoparticles/chemistry , Peptides
3.
Plant J ; 102(1): 53-67, 2020 04.
Article in English | MEDLINE | ID: mdl-31733118

ABSTRACT

Phosphorus (P) is an essential macronutrient required for plant development and production. The mechanisms regulating phosphate (Pi) uptake are well established, but the function of chloroplast Pi homeostasis is poorly understood in Oryza sativa (rice). PHT2;1 is one of the transporters/translocators mediating Pi import into chloroplasts. In this study, to gain insight into the role of OsPHT2;1-mediated stroma Pi, we analyzed OsPHT2;1 function in Pi utilization and photoprotection. Our results showed that OsPHT2;1 was induced by Pi starvation and light exposure. Cell-based assays showed that OsPHT2;1 localized to the chloroplast envelope and functioned as a low-affinity Pi transporter. The ospht2;1 had reduced Pi accumulation, plant growth and photosynthetic rates. Metabolite profiling revealed that 52.6% of the decreased metabolites in ospht2;1 plants were flavonoids, which was further confirmed by 40% lower content of total flavonoids compared with the wild type. As a consequence, ospht2;1 plants were more sensitive to UV-B irradiation. Moreover, the content of phenylalanine, the precursor of flavonoids, was also reduced, and was largely associated with the repressed expression of ADT1/MTR1. Furthermore, the ospht2;1 plants showed decreased grain yields at relatively high levels of UV-B irradiance. In summary, OsPHT2;1 functions as a chloroplast-localized low-affinity Pi transporter that mediates UV tolerance and rice yields at different latitudes.


Subject(s)
Chloroplasts/metabolism , Flavonoids/metabolism , Oryza/metabolism , Phosphate Transport Proteins/metabolism , Plant Proteins/metabolism , Homeostasis , Oryza/genetics , Oryza/physiology , Oryza/radiation effects , Phenylalanine/metabolism , Phosphate Transport Proteins/genetics , Photosynthesis , Plant Proteins/genetics , Starch/metabolism , Sucrose/metabolism , Ultraviolet Rays/adverse effects
4.
Plant Cell Physiol ; 60(12): 2785-2796, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31424513

ABSTRACT

Phosphorus is one of the most important macronutrients required for plant growth and development. The importance of phosphorylation modification in regulating phosphate (Pi) homeostasis in plants is emerging. We performed phosphoproteomic profiling to characterize proteins whose degree of phosphorylation is altered in response to Pi starvation in rice root. A subset of 554 proteins, including 546 down-phosphorylated and eight up-phosphorylated proteins, exhibited differential phosphorylation in response to Pi starvation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis with the differentially phosphorylated proteins indicated that RNA processing, transport, splicing and translation and carbon metabolism played critical roles in response to Pi starvation in rice. Levels of phosphorylation of four mitogen-activated protein kinases (MAPKs), including OsMAPK6, five calcium-dependent protein kinases (CDPKs) and OsCK2ß3 decreased in response to Pi starvation. The decreased phosphorylation level of OsMAPK6 was confirmed by Western blotting. Mutation of OsMAPK6 led to Pi accumulation under Pi-sufficient conditions. Motif analysis indicated that the putative MAPK, casein kinase 2 (CK2) and CDPK substrates represented about 54.4%, 21.5% and 4.7%, respectively, of the proteins exhibiting differential phosphorylation. Based on the motif analysis, 191, 151 and 46 candidate substrates for MAPK, CK2 and CDPK were identified. These results indicate that modification of phosphorylation profiles provides complementary information on Pi-starvation-induced processes, with CK2, MAPK and CDPK protein kinase families playing key roles in these processes in rice.


Subject(s)
Casein Kinase II/metabolism , Mitogen-Activated Protein Kinases/metabolism , Oryza/metabolism , Phosphates/metabolism , Plant Proteins/metabolism , Casein Kinase II/genetics , Gene Expression Regulation, Plant/physiology , Mitogen-Activated Protein Kinases/genetics , Oryza/physiology , Phosphates/deficiency , Plant Proteins/genetics
5.
Small ; 15(35): e1902755, 2019 08.
Article in English | MEDLINE | ID: mdl-31347262

ABSTRACT

Gold-silver nanocages (GSNCs) are widely used in cancer imaging and therapy due to excellent biocompatibility, internal hollow structures, and tunable optical properties. However, their possible responses toward the tumor microenvironment are still not well understood. In this study, it is demonstrated that a kind of relatively small sized (35 nm) and partially hollow GSNCs (absorbance centered at 532 nm) can enhance the intrinsic photoacoustic imaging performances for blood vessels around tumor sites. More importantly, the high concentration of glutathione around the tumor cells' microenvironment may induce the aggregation, disintegration, and agglomeration of these GSNCs sequentially, allowing significant shifts in the absorbance spectrum of GSNCs to the near-infrared (NIR) region. This enhanced absorbance in the NIR region entails the significant photothermal therapy (PTT) effect. In vivo experiments, including photoacoustic microscopy (PAM) for cancer diagnosis and PTT in tumor model mice, also show coincident consequences. Taken together, the slightly hollow GSNCs may assist PAM-based tumor diagnosis and induce a tumor targeted PTT effect. This work paves a new avenue for the development of an alternative tumor diagnostic and therapeutic strategy.


Subject(s)
Glutathione/chemistry , Gold/chemistry , Hyperthermia, Induced , Nanostructures/chemistry , Neoplasms/diagnosis , Neoplasms/therapy , Phototherapy , Silver/chemistry , Theranostic Nanomedicine , Tumor Microenvironment
6.
J Plant Physiol ; 236: 15-22, 2019 May.
Article in English | MEDLINE | ID: mdl-30849693

ABSTRACT

Arsenic (As) contamination in agricultural soil can cause phytotoxicity and lead to As accumulation in crops. Rice (Oryza sativa) feeds half of the world's population, but the molecular mechanism of As detoxification is not well understood in rice. In this study, the role of OsNLA1 in arsenate uptake and tolerance in rice was analyzed. OsNLA1 expression was induced in response to As(V) stress. The osnla1 mutant was more sensitive to As(V) stress than those of the wild type (WT). When exposed to As(V), mutation of OsNLA1 resulted in 30% greater As accumulation in roots and shoots of the WT. Although OsPT8 expression was induced after As(V) exposure, the amount of its protein was reduced. Unexpectedly, the osnla1 mutant showed a significant increase in punctate structures of OsPT8-GFP in response to As(V) stress, while the amount of the OsPT8-GFP protein in the osnla1 mutant was greater than in the WT. Combining OsNLA1 mutation with OsPT8 overexpression resulted in As(V) hypersensitivity, As hyperaccumulation, and higher shoot to root ratio of As in rice. These results indicated that OsNLA1 plays an important role in arsenate uptake and tolerance, mainly via regulating the amount of Pi transporters.


Subject(s)
Arsenates/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Oryza/physiology , Phosphate Transport Proteins/metabolism , Phosphorus/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Transcriptome
7.
Plant Cell Physiol ; 59(12): 2564-2575, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30329110

ABSTRACT

Phosphate (Pi), as the main form of phosphorus that can be absorbed by plants, is one of the most limiting macro-nutrients for plants. However, the mechanism for maintaining Pi homeostasis in rice (Oryza sativa) is still not well understood. We identified a Pi-starvation-induced E3 ligase (OsPIE1) in rice. Using an in vitro self-ubiquitination assay, we determined the E3 ligase activities of OsPIE1. Using GUS staining and GFP detection, we analyzed tissue expression patterns of OsPIE1 and the subcellular localization of its encoded protein. The function of OsPIE1 in Pi homeostasis was analyzed using OsPIE1 overexpressors and ospie1 mutants. OsPIE1 was localized to the nucleus, and expressed in epidermis, exodermis and sclerenchyma layers of primary root. Under Pi-sufficient condition, overexpression of OsPIE1 upregulated the expression of OsPT2, OsPT3, OsPT10 and OsPAP21b, resulting in Pi accumulation and acid phosphatases (APases) induction in roots. OsSPX2 was strongly suppressed in OsPIE1 overexpressors. Further comparative transcriptome analysis, tissue expression patterns and genetic interaction analysis indicated that the enhancing of Pi accumulation and APase activities upon overexpression of OsPIE1 was (at least in part) caused by repression of OsSPX2. These results indicate that OsPIE1 plays an important role in maintaining Pi homeostasis in rice.


Subject(s)
Homeostasis , Oryza/enzymology , Phosphates/deficiency , Plant Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Acid Phosphatase/metabolism , Amino Acid Sequence , Cell Nucleus/metabolism , Epistasis, Genetic , Gene Expression Regulation, Plant , Genes, Plant , Organ Specificity/genetics , Oryza/genetics , Oryza/growth & development , Plant Proteins/chemistry , Plant Proteins/genetics , Plants, Genetically Modified , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...