Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(8): 3677-3689, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38354091

ABSTRACT

High-throughput in vitro assays combined with in vitro-in vivo extrapolation (IVIVE) leverage in vitro responses to predict the corresponding in vivo exposures and thresholds of concern. The integrated approach is also expected to offer the potential for efficient tools to provide estimates of chemical toxicity to various wildlife species instead of animal testing. However, developing fish physiologically based toxicokinetic (PBTK) models for IVIVE in ecological applications is challenging, especially for plausible estimation of an internal effective dose, such as fish equivalent concentration (FEC). Here, a fish PBTK model linked with the IVIVE approach was established, with parameter optimization of chemical unbound fraction, pH-dependent ionization and hepatic clearance, and integration of temperature effect and growth dilution. The fish PBTK-IVIVE approach provides not only a more precise estimation of tissue-specific concentrations but also a reasonable approximation of FEC targeting the estrogenic potency of endocrine-disrupting chemicals. Both predictions were compared with in vivo data and were accurate for most indissociable/dissociable chemicals. Furthermore, the model can help determine cross-species variability and sensitivity among the five fish species. Using the available IVIVE-derived FEC with target pathways is helpful to develop predicted no-effect concentration for chemicals with similar mode of action and support screening-level ecological risk assessment.


Subject(s)
Endocrine Disruptors , Models, Biological , Animals , Toxicokinetics , Endocrine Disruptors/toxicity , Fishes , Risk Assessment
2.
Hear Res ; 442: 108935, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38113793

ABSTRACT

Sound information is transduced from mechanical vibration to electrical signals in the cochlea, conveyed to and further processed in the brain to form auditory perception. During the process, spiral ganglion neurons (SGNs) are the key cells that connect the peripheral and central auditory systems by receiving information from hair cells in the cochlea and transmitting it to neurons of the cochlear nucleus (CN). Decades of research in the cochlea greatly improved our understanding of SGN function under normal and pathological conditions, especially about the roles of different subtypes of SGNs and their peripheral synapses. However, it remains less clear how SGN central terminals or auditory nerve (AN) synapses connect to CN neurons, and ultimately how peripheral pathology links to structural alterations and functional deficits in the central auditory nervous system. This review discusses recent progress about the morphological and physiological properties of different subtypes of AN synapses and associated postsynaptic CN neurons, their changes during aging, and the potential mechanisms underlying age-related hearing loss.


Subject(s)
Cochlear Nucleus , Hearing Loss , Humans , Cochlear Nucleus/pathology , Cochlear Nerve , Neurons/pathology , Synapses/pathology , Spiral Ganglion/pathology , Cochlea/physiology
3.
PLoS One ; 18(10): e0292676, 2023.
Article in English | MEDLINE | ID: mdl-37883357

ABSTRACT

Sound information is transmitted from the cochlea to the brain mainly by type I spiral ganglion neurons (SGNs), which consist of different subtypes with distinct physiological properties and selective expression of molecular markers. It remains unclear how these SGN subtypes distribute along the tonotopic axis, and whether the distribution pattern changes during aging that might underlie age-related hearing loss (ARHL). We investigated these questions using immunohistochemistry in three age groups of CBA/CaJ mice of either sex, including 2-5 months (young), 17-19 months (middle-age), and 28-32 months (old). Mouse cochleae were cryo-sectioned and triple-stained using antibodies against Tuj1, calretinin (CR) and calbindin (CB), which are reportedly expressed in all type I, subtype Ia, and subtype Ib SGNs, respectively. Labeled SGNs were classified into four groups based on the expression pattern of stained markers, including CR+ (subtype Ia), CB+ (subtype Ib), CR+CB+ (dual-labeled Ia/Ib), and CR-CB- (subtype Ic) neurons. The distribution of these SGN groups was analyzed in the apex, middle, and base regions of the cochleae. It showed that the prevalence of subtype Ia, Ib and dual-labeled Ia/Ib SGNs are high in the apex and low in the base. In contrast, the distribution pattern is reversed in Ic SGNs. Such frequency-dependent distribution is largely maintained during aging except for a preferential reduction of Ic SGNs, especially in the base. These findings corroborate the prior study based on RNAscope that SGN subtypes show differential vulnerability during aging. It suggests that sound processing of different frequencies involves distinct combinations of SGN subtypes, and the age-dependent loss of Ic SGNs in the base may especially impact high-frequency hearing during ARHL.


Subject(s)
Cochlea , Spiral Ganglion , Animals , Mice , Spiral Ganglion/metabolism , Mice, Inbred CBA , Cochlea/physiology , Neurons/metabolism , Aging
4.
Res Sq ; 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37502961

ABSTRACT

The uptake of Ca2+ into and extrusion of calcium from the mitochondrial matrix, regulated by the mitochondrial Ca2+ uniporter (MCU), is a fundamental biological process that has crucial impacts on cellular metabolism, signaling, growth and survival. Herein, we report that the embryonic lethality of Mcu-deficient mice is fully rescued by orally supplementing ferroptosis inhibitor lipophilic antioxidant vitamin E and ubiquinol. Mechanistically, we found MCU promotes acetyl-CoA-mediated GPX4 acetylation at K90 residue, and K90R mutation impaired the GPX4 enzymatic activity, a step that is crucial for ferroptosis. Structural analysis supports the possibility that GPX4 K90R mutation alters the conformational state of the molecule, resulting in disruption of a salt bridge formation with D23, which was confirmed by mutagenesis studies. Finally, we report that deletion of MCU in cancer cells caused a marked reduction in tumor growth in multiple cancer models. In summary, our study provides a first direct link between mitochondrial calcium level and sustained GPX4 enzymatic activity to regulate ferroptosis, which consequently protects cancer cells from ferroptosis.

5.
Sci Total Environ ; 897: 165271, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37422235

ABSTRACT

In vitro to in vivo (IVIVE) leverages in vitro high-throughput biological responses to predict the corresponding in vivo exposures and further estimate the human safe dose. However, for phenolic endocrine disrupting chemicals (EDCs) linked with complicated biological pathways and adverse outcomes (AO), such as bisphenol A (BPA) and 4-nonylphenol (4-NP), plausible estimation of human equivalent doses (HED) by IVIVE approaches considering various biological pathways and endpoints is still challenging. To explore the capabilities and limitations of IVIVE, this study conducted physiologically based toxicokinetic (PBTK)-IVIVE approaches to derive pathway-specific HEDs using BPA and 4-NP as examples. In vitro HEDs of BPA and 4-NP varied in different adverse outcomes, pathways, and testing endpoints and ranged from 0.0013 to 1.0986 mg/kg bw/day and 0.0551 to 1.7483 mg/kg bw/day, respectively. In vitro HEDs associated with reproductive AOs initiated by PPARα activation and ER agonism were the most sensitive. Model verification suggested the potential of using effective in vitro data to determine reasonable approximation of in vivo HEDs for the same AO (fold differences of most AOs ranged in 0.14-2.74 and better predictions for apical endpoints). Furthermore, system-specific parameters of cardiac output and its fraction, body weight, as well as chemical-specific parameters of partition coefficient and liver metabolic were most sensitive for the PBTK simulations. The results indicated that the application of fit for-purpose PBTK-IVIVE approach could provide credible pathway-specific HEDs and contribute to high throughput prioritization of chemicals in a more realistic scenario.


Subject(s)
Endocrine Disruptors , Humans , Endocrine Disruptors/toxicity , Endocrine Disruptors/metabolism , Models, Biological , Liver/metabolism , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/metabolism
6.
Neuroscience ; 514: 25-37, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36738912

ABSTRACT

Cellular morphology and synaptic configuration are key determinants of neuronal function and are often modified under pathological conditions. In the first nucleus of the central auditory system, the cochlear nucleus (CN), principal bushy neurons specialize in processing temporal information of sound critical for hearing. These neurons alter their physiological properties during aging that contribute to age-related hearing loss (ARHL). The structural basis of such changes remains unclear, especially age-related modifications in their dendritic morphology and the innervating auditory nerve (AN) synapses. Using young (2-5 months) and aged (28-33 months) CBA/CaJ mice of either sex, we filled individual bushy neurons with fluorescent dye in acute brain slices to characterize their dendritic morphology, followed by immunostaining against vesicular glutamate transporter 1 (VGluT1) and calretinin (CR) to identify innervating AN synapses. We found that dendritic morphology of aged bushy neurons had significantly reduced complexity, suggesting age-dependent dendritic degeneration, especially in neurons with predominantly non-CR-expressing synapses on the soma. These dendrites were innervated by AN bouton synapses, which were predominantly non-CR-expressing in young mice but had increased proportion of CR-expressing synapses in old mice. While somatic AN synapses degenerated substantially with age, as quantified by VGluT1-labeled puncta volume, no significant difference was observed in the total volume of dendritic synapses between young and old mice. Consequently, synaptic density on dendrites was significantly higher in old mice. The findings suggest that dendritic degeneration and altered synaptic innervation in bushy neurons during aging may underlie their changed physiological activity and contribute to the development of ARHL.


Subject(s)
Cochlear Nucleus , Hearing Loss , Animals , Mice , Cochlear Nerve , Mice, Inbred CBA , Neurons/physiology , Synapses/physiology , Male , Female
7.
J Hazard Mater ; 447: 130830, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36682248

ABSTRACT

4-n-nonylphenol (4-n-NP), a typical endocrine disrupting chemical, has been so far frequently detected in various environmental mediums and editable food. However, the specific metabolic pathways in human and potential adverse effects of metabolites have not been elucidated yet. Here, metabolic profiling of 4-n-NP in human liver microsome (HLM) was comprehensively characterized by integrated approaches of testing and assessment. A total of 21 metabolites were identified using nontarget analysis with high-resolution mass spectrum, including three groups of unique phase I metabolites first determined in HLM. Seven various metabolic pathways of 4-n-NP were identified by both in silico and in vitro, and CYP1A2, 2C19, and 2D6 were the mainly participating enzymes. Two secondary metabolites with carbonyl groups on side chains (M4, M7) presented most abundant in HLM, which were also predicted to have high binding affinities towards HPG-axis-related receptors (AR, ER, and PR). ESRs (estrogen receptors) were shared core protein targets for all metabolites revealed by protein-protein interaction networks. Biological functions enrichment analysis indicated that 4-n-NP metabolites might primarily involve in ESR-mediated signaling, GPCR ligand binding, Class A/1 (Rhodopsin-like receptors) and metabolism-related pathways. These findings of 4-n-NP metabolites, pathways, and biological effects provide insightful information for its environmental exposure and risk assessment.


Subject(s)
Microsomes, Liver , Receptors, G-Protein-Coupled , Humans , Microsomes, Liver/metabolism , Ligands , Receptors, G-Protein-Coupled/metabolism , Phenols/chemistry
8.
Front Integr Neurosci ; 17: 1294525, 2023.
Article in English | MEDLINE | ID: mdl-38162822

ABSTRACT

Bioelectronic medicine uses electrical stimulation of the nervous system to improve health outcomes throughout the body primarily by regulating immune responses. This concept, however, has yet to be applied systematically to the auditory system. There is growing interest in how cochlear damage and associated neuroinflammation may contribute to hearing loss. In conjunction with recent findings, we propose here a new perspective, which could be applied alongside advancing technologies, to use auditory nerve (AN) stimulation to modulate immune responses in hearing health disorders and following surgeries for auditory implants. In this article we will: (1) review the mechanisms of inflammation in the auditory system in relation to various forms of hearing loss, (2) explore nerve stimulation to reduce inflammation throughout the body and how similar neural-immune circuits likely exist in the auditory system (3) summarize current methods for stimulating the auditory system, particularly the AN, and (4) propose future directions to use bioelectronic medicine to ameliorate harmful immune responses in the inner ear and auditory brainstem to treat refractory conditions. We will illustrate how current knowledge from bioelectronic medicine can be applied to AN stimulation to resolve inflammation associated with implantation and disease. Further, we suggest the necessary steps to get discoveries in this emerging field from bench to bedside. Our vision is a future for AN stimulation that includes additional protocols as well as advances in devices to target and engage neural-immune circuitry for therapeutic benefits.

9.
Bull Environ Contam Toxicol ; 110(1): 15, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36520278

ABSTRACT

This study aimed to investigate the effect of 10-40 mg L-1 polystyrene microplastics (PS-MPs), 0.05 mg L-1 cadmium (Cd) and their combination on the growth and related physiological and toxicological responses in Oryza sativa L. seedling roots. Results showed that the fresh weight, dry weight and root lengths of treatments by PS-MPs, Cd single and combinative were all lower than the control, and opposite phenomenon appeared in production of superoxide radical (O2-.), malondialdehyde (MDA) and carbonylated protein. Superoxide dismutase (SOD) and guaiacol peroxidase (POD) activities induced by 10-40 mg L-1 PS-MPs and combination with Cd were almost higher than those by Cd alone, expression of heat shock protein (HSP)70 and carbonylated protein slightly decreased. In compound exposure, 10-20 mg L-1 PS-MPs alleviated Cd damage and promoted root growth by increasing SOD and POD activities, but 40 mg L-1 PS-MPs accelerated the accumulation of Cd, MDA, and O2-., which was responsible for decreasing root biomass and the aggravating necrosis of root tip cells.


Subject(s)
Cadmium , Oryza , Cadmium/toxicity , Cadmium/metabolism , Seedlings , Microplastics/metabolism , Plastics , Plant Roots/metabolism , Oxidative Stress , Antioxidants/metabolism , Superoxide Dismutase/metabolism
10.
Sci Total Environ ; 842: 156816, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-35738365

ABSTRACT

Organic contaminants showing aryl hydrocarbon receptor (AhR) agonist activity are commonly detected in areas disturbed by intense human activities and they can initiate a variety of biochemical, physiological, and toxicological effects. A new integrated screening strategy for AhR agonist candidate identification and toxicity confirmation was developed to characterize the AhR-active pollutants in sediments of the contaminated Daqing River basin (DRB) in North China. The specific objectives were to (i) determine the concentrations of known AhR agonists, (ii) identify the novel AhR agonist candidates from nontarget screening (NTS) with structure alerts, computational toxicology (CompTox) Dashboard bioassays, and in silico predictions, and (iii) evaluate contributions of AhR agonists to the overall potencies and characterize the distribution and source of these pollutants. Significant AhR-mediated potencies were observed in all sediment extracts by in vitro bioassays. Concentrations of polar target chemicals in sediment extracts were much lower than nonpolar target chemicals. A total of 19 known AhR agonists explained 11.3 % to 49.1 % of bioassay-derived AhR-mediated potencies and polychlorinated biphenyls (PCB) 126 and PCB169 were found to contribute significantly to the total effects. 21 compounds screened from NTS by AhR-related structure alerts and further confirmed toxicity by high-throughput bioassays and in silico predictions were selected as AhR agonist candidates. Most of them were substituted PAHs, biphenyls, quinones, substituted phenols and heterocyclic compounds, and they primarily originated from nearby manufacturing industries. Of these compounds, 1-methy-pyrene exhibited significant AhR-mediated potency. Follow up studies should focus on toxicological mechanism, source, and fate of these novel AhR agonists in water environment.


Subject(s)
Environmental Pollutants , Polycyclic Aromatic Hydrocarbons , Biological Assay , Geologic Sediments/chemistry , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Receptors, Aryl Hydrocarbon , Rivers/chemistry
11.
Front Aging Neurosci ; 14: 846804, 2022.
Article in English | MEDLINE | ID: mdl-35418849

ABSTRACT

Age-related hearing loss (ARHL) is a major hearing impairment characterized by pathological changes in both the peripheral and central auditory systems. Low-grade inflammation was observed in the cochlea of deceased human subjects with ARHL and animal models of early onset ARHL, which suggests that inflammation contributes to the development of ARHL. However, it remains elusive how chronic inflammation progresses during normal aging in the cochlea, and especially the accompanying changes of neuroinflammation in the central auditory system. To address this, we investigated chronic inflammation in both the cochlea and the cochlear nucleus (CN) of CBA/CaJ mice, an inbred mouse strain that undergoes normal aging and develops human, like-late-onset ARHL. Using immunohistochemistry, confocal microscopy, and quantitative image processing, we measured the accumulation and activation of macrophages in the cochlea and microglia in the CN using their shared markers: ionized calcium binding adaptor molecule 1 (Iba1) and CD68-a marker of phagocytic activity. We found progressive increases in the area covered by Iba1-labeled macrophages and enhanced CD68 staining in the osseous spiral lamina of the cochlea that correlated with elevated ABR threshold across the lifespan. During the process, we further identified significant increases in microglial activation and C1q deposition in the CN, indicating increased neuroinflammation and complement activation in the central auditory system. Our study suggests that during normal aging, chronic inflammation occurs in both the peripheral and the central auditory system, which may contribute in coordination to the development of ARHL.

12.
J Neurosci ; 42(13): 2729-2742, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35165172

ABSTRACT

Calretinin (CR) is a major calcium binding protein widely expressed in the CNS. However, its synaptic function remains largely elusive. At the auditory synapse of the endbulb of Held, CR is selectively expressed in different subtypes. Combining electrophysiology with immunohistochemistry, we investigated the synaptic transmission at the endbulb of Held synapses with and without endogenous CR expression in mature CBA/CAJ mice of either sex. Two synapse subtypes showed similar basal synaptic transmission, except a larger quantal size in CR-expressing synapses. During high-rate stimulus trains, CR-expressing synapses showed improved synaptic efficacy with significantly less depression and lower asynchronous release, suggesting more efficient exocytosis than non-CR-expressing synapses. Conversely, CR-expressing synapses had a smaller readily releasable pool size, which was countered by higher release probability and faster synaptic recovery to support sustained release during high-rate activity. EGTA-AM treatment did not change the synaptic transmission of CR-expressing synapses, but reduced synaptic depression and decreased asynchronous release at non-CR-expressing synapses, suggesting that CR helps to minimize calcium accumulation during high-rate activity. Both synapses express parvalbumin, another calcium-binding protein with slower kinetics and higher affinity than CR, but not calbindin. Furthermore, CR-expressing synapses only express the fast isoform of vesicular glutamate transporter 1 (VGluT1), while most non-CR-expressing synapses express both VGluT1 and the slower VGluT2, which may underlie their lagged synaptic recovery. The findings suggest that, paired with associated synaptic machinery, differential CR expression regulates synaptic efficacy among different subtypes of auditory nerve synapses to accomplish distinctive physiological functions in transmitting auditory information at high rates.SIGNIFICANCE STATEMENT CR is a major calcium-binding protein in the brain. It remains unclear how endogenous CR impacts synaptic transmission. We investigated the question at the large endbulb of Held synapses with selective CR expression and found that CR-expressing and non-CR-expressing synapses had similar release properties under basal synaptic transmission. During high-rate activity, however, CR-expressing synapses showed improved synaptic efficacy with less depression, lower asynchronous release, and faster recovery. Furthermore, CR-expressing synapses use exclusive VGluT1 to refill synaptic vesicles, while non-CR-expressing synapses use both VGluT1 and the slower isoform of VGluT2. Our findings suggest that CR may play significant roles in promoting synaptic efficacy during high-rate activity, and selective CR expression can differentially impact signal processing among different synapses.


Subject(s)
Synapses , Synaptic Transmission , Animals , Calbindin 2/metabolism , Mice , Mice, Inbred CBA , Synapses/physiology , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism
13.
Ear Hear ; 43(4): 1228-1244, 2022.
Article in English | MEDLINE | ID: mdl-34999595

ABSTRACT

OBJECTIVE: This study aimed to investigate the associations between advanced age and the amount and the speed of neural adaptation of the electrically stimulated auditory nerve (AN) in postlingually deafened adult cochlear implant (CI) users. DESIGN: Study participants included 26 postlingually deafened adult CI users, ranging in age between 28.7 and 84.0 years (mean: 63.8 years, SD: 14.4 years) at the time of testing. All study participants used a Cochlear Nucleus device with a full electrode array insertion in the test ear. The stimulus was a 100-ms pulse train with a pulse rate of 500, 900, 1800, or 2400 pulses per second (pps) per channel. The stimulus was presented at the maximum comfortable level measured at 2400 pps with a presentation rate of 2 Hz. Neural adaptation of the AN was evaluated using electrophysiological measures of the electrically evoked compound action potential (eCAP). The amount of neural adaptation was quantified by the adaptation index (AI) within three time windows: around 0 to 8 ms (window 1), 44 to 50 ms (window 2), and 94 to 100 ms (window 3). The speed of neural adaptation was quantified using a two-parameter power law estimation. In 23 participants, four electrodes across the electrode array were tested. In three participants, three electrodes were tested. Results measured at different electrode locations were averaged for each participant at each pulse rate to get an overall representation of neural adaptation properties of the AN across the cochlea. Linear-mixed models (LMMs) were used (1) to evaluate the effects of age at testing and pulse rate on the speed of neural adaptation and (2) to assess the effects of age at testing, pulse rate, and duration of stimulation (i.e., time window) on the amount of neural adaptation in these participants. RESULTS: There was substantial variability in both the amount and the speed of neural adaptation of the AN among study participants. The amount and the speed of neural adaptation increased at higher pulse rates. In addition, larger amounts of adaptation were observed for longer durations of stimulation. There was no significant effect of age on the speed or the amount of neural adaptation. CONCLUSIONS: The amount and the speed of neural adaptation of the AN are affected by both the pulse rate and the duration of stimulation, with higher pulse rates and longer durations of stimulation leading to faster and greater neural adaptation. Advanced age does not affect neural adaptation of the AN in postlingually deafened, middle-aged and elderly adult CI users.


Subject(s)
Cochlear Implantation , Cochlear Implants , Adult , Aged , Aged, 80 and over , Cochlea , Cochlear Nerve/physiology , Electric Stimulation , Evoked Potentials, Auditory/physiology , Humans , Middle Aged
14.
J Hazard Mater ; 424(Pt A): 127288, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34592594

ABSTRACT

It is crucial to deeply understand the fate and removal mechanism of various organophosphate flame retardants (PFRs) in specified wastewater treatment processes. However, concentration fluctuation and matrix effect in wastewater challenge quantification of PFR flux for both field observation and model validation. We present measured seasonal distribution profiles of time-weighted average (TWA) concentrations by in situ hydrophobic and polar passive samplers and modeled mass transport and transformation by means of fugacity for 11 PFRs with varied structures in an anaerobic-anoxic-oxic (A-A-O) municipal wastewater treatment system, and provided a systematic approach to characterize fate and removal mechanism of PFRs in major compartments via various treatment processes. We find evidence that PFRs have a unique structural-dependent fate and removal in the A-A-O system. Hydrophilic chlorinated-PFRs present persistent in all major compartments and dominate in effluents with significant variations; alkyl-PFRs are majorly reduced by biodegradation; whereas hydrophobic aryl-PFRs have the highest removal percentage, contributed by both sorption on solids and biotransformation. Sensitive analysis shows the most influential operation parameters on removal efficiency varied among the PFRs with different properties. We also conclude passive sampling can be effectively applied to estimate TWA wastewater concentrations and to validate fugacity model prediction.


Subject(s)
Flame Retardants , Water Purification , Anaerobiosis , Environmental Monitoring , Flame Retardants/analysis , Organophosphates
15.
Environ Res ; 201: 111602, 2021 10.
Article in English | MEDLINE | ID: mdl-34214559

ABSTRACT

Freshwater ecosystems have been threatened by complicated disturbances from both natural and anthropogenic variables, especially in dynamic and complex river basins. The environmental DNA (eDNA)-based approach provides a broader spectrum and higher throughput way of biomonitoring for biodiversity assessment compared with traditional morphological survey. Most eDNA metabarcoding studies have been limited to a few specific taxa/groups and habitat scopes. Here we applied the eDNA metabarcoding to characterize the structures and spatial variations of zooplankton and fish communities among different habitat types in a highly dynamic and complex freshwater ecosystem of the Daqing River basin (DRB). The results showed that varied species spectra of zooplankton and fish communities were identified and unique dominant species occurred across habitats. Additionally, markedly spatial distributions of biotic community structures were observed in areas with different habitat characteristics. Natural variables, including geographic distances and gradient ratio, as well as anthropogenic factors of chemical oxygen demand (COD) and organic chemicals demonstrated significant effects but different outcomes on the structures of zooplankton and fish communities. Moreover, the relative abundances of specific aquatic taxa were associated with the gradient of particular environmental variables. This case study verified the distribution patterns and differentiation mechanisms of biotic communities under habitat heterogeneity could be captured by application of eDNA biomonitoring. And habitat-specific and even species-specific environmental stressors would be diagnosed for improving management of complex river basins.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Ecosystem , Fresh Water , Animals , DNA, Environmental , Fishes/genetics , Zooplankton
16.
J Physiol ; 599(6): 1833-1854, 2021 03.
Article in English | MEDLINE | ID: mdl-33450070

ABSTRACT

KEY POINTS: Sound information is transmitted by different subtypes of spiral ganglion neurons (SGN) from the ear to the brain. Selective damage of SGN peripheral synapses (cochlear synaptopathy) is widely recognized as one of the primary mechanisms of hearing loss, whereas the mechanisms at the SGN central synapses remain unclear. We report that different subtypes of SGN central synapses converge at different ratios onto individual target cochlear nucleus neurons with distinct physiological properties, and show biased morphological and physiological changes during age-related hearing loss (ARHL). The results reveal a new dimension in cochlear nucleus neural circuitry that systematically reassembles and processes auditory information from different SGN subtypes, which is altered during ageing and probably contributes to the development of ARHL. In addition to known cochlear synaptopathy, the present study shows that SGN central synapses are also pathologically changed during ageing, which collectively helps us better understand the structure and function of SGNs during ARHL. ABSTRACT: Sound information is transmitted from the cochlea to the brain by different subtypes of spiral ganglion neurons (SGN), which show varying degrees of vulnerability under pathological conditions. Selective cochlear synaptopathy, the preferential damage of certain subtypes of SGN peripheral synapses, has been recognized as one of the main mechanisms of hearing loss. The organization and function of the auditory nerve (AN) central synapses from different subtypes of SGNs remain unclear, including how different AN synapses reassemble onto individual neurons in the cochlear nucleus, as well as how they differentially change during hearing loss. Combining immunohistochemistry with electrophysiology, we investigated the convergence pattern and subtype-specific synaptopathy of AN synapses at the endbulb of Held, as well as the response properties of their postsynaptic bushy neurons in CBA/CaJ mice of either sex under normal hearing and age-related hearing loss (ARHL). We found that calretinin-expressing (type Ia ) and non-calretinin-expressing (type Ib /Ic ) endbulbs converged along a continuum of different ratios onto individual bushy neurons with varying physiological properties. Endbulbs degenerated during ageing in parallel with ARHL. Furthermore, the degeneration was more severe in non-calretinin-expressing synapses, which correlated with a gradual decrease in bushy neuron subpopulation predominantly innervated by these inputs. These synaptic and cellular changes were profound in middle-aged mice when their hearing thresholds were still relatively normal and prior to severe ARHL. Our findings suggest that biased AN central synaptopathy and the correlated shift in cochlear nucleus neuronal composition play significant roles in weakened auditory input and altered central auditory processing during ARHL.


Subject(s)
Evoked Potentials, Auditory, Brain Stem , Hearing Loss , Animals , Cochlea , Cochlear Nerve , Mice , Mice, Inbred CBA , Spiral Ganglion , Synapses
17.
J Med Entomol ; 58(3): 1256-1263, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33367827

ABSTRACT

Metabolomics can indicate the physiological and biochemical responses of mosquitoes to different stimulants, including insecticides, which allow them to adapt to different inhospitable environments. Though metabolic differences between insecticide-resistant and -susceptible strains have been established for other mosquito species, such as Anopheles and Culex, it is yet to be done for Aedes albopictus (Skuse). In this study, nuclear magnetic resonance (NMR) spectroscopy-based metabolomic analysis performed on Ae. albopictus deltamethrin-resistant and -susceptible strains showed significant differences in amino acid, organic acid, and sugar metabolism. Concentrations of neutral amino acids and sugars tended to be lower in the deltamethrin-resistant strain than in the deltamethrin-suceptible strain, but the concentration of basic and acidic amino acids and organic acids increased. All these changes might accommodate biochemical and physiological needs in deltamethrin-resistant mosquitoes, such as enzyme synthesis and detoxification. This was further confirmed by the predictable draft metabolic map. This is the first report using NMR spectroscopy to investigate the metabolic differences between deltamethrin-resistant and -susceptible strains of Ae. albopictus. To a certain degree, this demonstrates how Ae. albopictus develop insecticide resistance by metabolic reprograming to survive under the insecticide pressure.


Subject(s)
Aedes/metabolism , Insecticide Resistance , Insecticides/pharmacology , Metabolome , Nitriles/pharmacology , Pyrethrins/pharmacology , Aedes/drug effects , Animals , Proton Magnetic Resonance Spectroscopy
18.
APL Bioeng ; 4(4): 046106, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33344876

ABSTRACT

Precisely engineered neuronal circuits are promising for both fundamental research and clinical applications. However, randomly plating thousands of cells during neural network fabrication remains a major technical obstacle, which often results in a loss of tracking in neurons' identities. In this work, we demonstrated an accurate and unique neural wiring technique, mimicking neurons' natural affinity to microfibers. SU-8 microridges, imitating lie-down microfibers, were photolithographically patterned and then selectively coated with poly-l-lysine. We accurately plated Aplysia californica neurons onto designated locations. Plated neurons were immobilized by circular microfences. Furthermore, neurites regrew effectively along the microridges in vitro and reached adjacent neurons without undesirable crosstalks. Functional chemical synapses also formed between accurately wired neurons, enabling two-way transmission of electrical signals. Finally, we fabricated microridges on a microelectrode array. Neuronal spikes, stimulation-evoked synaptic activity, and putative synaptic adaption between connected neurons were observed. This biomimetic platform is simple to fabricate and effective with neurite pathfinding. Therefore, it can serve as a powerful tool for fabricating neuronal circuits with rational design, organized cellular communications, and fast prototyping.

19.
Brain Sci ; 9(11)2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31683609

ABSTRACT

Age-related hearing loss (ARHL) is associated with weakened inhibition in the central auditory nervous system including the cochlear nucleus. One of the main inhibitory neurons of the cochlear nucleus is the D-stellate neuron, which provides extensive glycinergic inhibition within the local neural network. It remains unclear how physiological activities of D-stellate neurons change during ARHL and what are the underlying mechanisms. Using in vitro whole-cell patch clamp technique, we studied the intrinsic membrane properties of D-stellate neurons, the changes of their firing properties, and the underlying mechanisms in CBA/CaJ mice at the ages of 3-4 months (young), 17-19 months (middle age), and 27-33 months (aged). We found that the intrinsic membrane properties of D-stellate neurons were unchanged among these three age groups. However, these neurons showed decreased firing rate with age in response to sustained auditory nerve stimulation. Further investigation showed that auditory nerve-evoked excitatory postsynaptic currents (EPSCs) were significantly reduced in strength with age. These findings suggest that D-stellate neurons receive weakened synaptic inputs from the auditory nerve and decreased sound driven activity with age, which are expected to reduce the overall inhibition and enhance the central gain in the cochlear nucleus during ARHL.

20.
PLoS One ; 14(10): e0223137, 2019.
Article in English | MEDLINE | ID: mdl-31581200

ABSTRACT

The cochlear nucleus (CN) transforms the spike trains of spiral ganglion cells into a set of sensory representations that are essential for auditory discriminations and perception. These transformations require the coordinated activity of different classes of neurons that are embryologically derived from distinct sets of precursors. Decades of investigation have shown that the neurons of the CN are differentiated by their morphology, neurotransmitter receptors, ion channel expression and intrinsic excitability. In the present study we have used linear discriminant analysis (LDA) to perform an unbiased analysis of measures of the responses of CN neurons to current injections to objectively categorize cells on the basis of both morphology and physiology. Recordings were made from cells in brain slices from CBA/CaJ mice and a transgenic mouse line, NF107, crossed against the Ai32 line. For each cell, responses to current injections were analyzed for spike rate, spike shape, input resistance, resting membrane potential, membrane time constant, hyperpolarization-activated sag and time constant. Cells were filled with dye for morphological classification, and visually classified according to published accounts. The different morphological classes of cells were separated with the LDA. Ventral cochlear nucleus (VCN) bushy cells, planar multipolar (T-stellate) cells, and radiate multipolar (D-stellate) cells were in separate clusters and separate from all of the neurons from the dorsal cochlear nucleus (DCN). Within the DCN, the pyramidal cells and tuberculoventral cells were largely separated from a distinct cluster of cartwheel cells. principal axes, whereas VCN cells were in 3 clouds approximately orthogonal to this plane. VCN neurons from the two mouse strains overlapped but were slightly separated, indicating either a strain dependence or differences in slice preparation methods. We conclude that cochlear nucleus neurons can be objectively distinguished based on their intrinsic electrical properties, but such distinctions are still best aided by morphological identification.


Subject(s)
Aging/physiology , Cochlear Nucleus/physiology , Discriminant Analysis , Neurons/classification , Action Potentials/physiology , Animals , Cell Shape , Mice, Inbred CBA , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...