Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 478: 135527, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151363

ABSTRACT

The disposable paper cups (DPCs) release millions of microplastics (MPs) when used for hot beverages. However, the tissue-specific deposition and toxic effects of MPs and associated toxins remain largely unexplored, especially at daily consumption levels. We administered MPs and associated toxins extracted from leading brand DPCs to pregnant mice, revealing dose-responsive harmful effects on fetal development and maternal physiology. MPs were detected in all 13 examined tissues, with preferred depositions in the fetus, placenta, kidney, spleen, lung, and heart, contributing to impaired phenotypes. Brain tissues had the smallest MPs (90.35 % < 10 µm). A dose-responsive shift in the cecal microbiome from Firmicutes to Bacteroidetes was observed, coupled with enhanced biosynthesis of microbial fatty acids. A moderate consumption of 3.3 cups daily was sufficient to alter the cecal microbiome, global metabolic functions, and immune health, as reflected by tissue-specific transcriptomic analyses in maternal blood, placenta, and mammary glands, leading to neurodegenerative and miscarriage risks. Gene-based benchmark dose framework analysis suggested a safe exposure limit of 2 to 4 cups/day in pregnant mice. Our results highlight tissue-specific accumulation and metabolic and reproductive toxicities in mice at DPC consumption levels presumed non-hazardous, with potential health implications for pregnant women and fetuses.

2.
Biosensors (Basel) ; 12(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36140143

ABSTRACT

The development of biosensing platforms has been impressively accelerated by advancements in liquid crystal (LC) technology. High response rate, easy operation, and good stability of the LC droplet-based biosensors are all benefits of the long-range order of LC molecules. Bioprobes emerged when LC droplets were combined with biotechnology, and these bioprobes are used extensively for disease diagnosis, food safety, and environmental monitoring. The LC droplet biosensors have high sensitivity and excellent selectivity, making them an attractive tool for the label-free, economical, and real-time detection of different targets. Portable devices work well as the accessory kits for LC droplet-based biosensors to make them easier to use by anyone for on-site monitoring of targets. Herein, we offer a review of the latest developments in the design of LC droplet-based biosensors for qualitative target monitoring and quantitative target analysis.


Subject(s)
Biosensing Techniques , Liquid Crystals , Biotechnology , Liquid Crystals/chemistry , Point-of-Care Systems , Point-of-Care Testing
3.
J Biomed Nanotechnol ; 16(7): 997-1017, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-33308372

ABSTRACT

Nanotechnology has been widely applied in tumor imaging, diagnostic and therapy. Beside the prefabricated nanomaterials, constructing nanostructures in living cells through self-assemble provides an alternative strategy to treat cancer. In vivo self-assembly renders the conversion of compatible small molecules into assembled nanostructures with toxicity, and is expected to outperform the prefabricated nanotechnologies as the small molecules diffuse faster than their assembly form. Attributed to the specific tumor environment such as low pH, high ROS, high enzyme expression and so on, in vivo self-assembly could differentiate cancer cells from normal ones with high selectivity. The in vivo self-assembly based caner therapy has made considerable progress in the last decade with confirmed advantages such as high capacity, minimal drug resistance, high accumulation, enhanced retention and so on. This review summarized the in vivo self-assembly of nanostructures induced by the stimuli like pH, ROS, enzyme, metal ion, localized concentration, biominerization and their utilization in cancer therapy.


Subject(s)
Nanostructures , Neoplasms , Humans , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL