Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 946: 174428, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964390

ABSTRACT

Tris(2-chloroethyl) phosphate (TCEP), a chlorinated organophosphate ester, is commonly found in aquatic environments. Due to its various toxic effects, it may pose a risk to the health of aquatic organisms. However, the potential impacts of TCEP exposure on the intestinal microbiota and hepatic function in amphibians have not been reported. This study investigated the impact of long-term exposure to environmentally relevant concentrations of TCEP (0, 3, and 90 µg/L) on the intestinal microbiota and hepatic transcriptome of Polypedates megacephalus tadpoles. The results showed that the body size of the tadpoles decreased significantly with an increase in TCEP concentration. Additionally, TCEP exposure affected the diversity and composition of the intestinal microbiota in tadpoles, leading to significant changes in the relative abundance of certain bacterial groups (the genera Aeromonas decreased and Citrobacter increased) and potentially promoting a more even distribution of microbial species, as indicated by a significant increase in the Simpson index. Moreover, the impact of TCEP on hepatic gene expression profiles in tadpoles was significant, with the majority of differentially expressed genes (DEGs) (709 out of 906 total DEGs in 3 µg/L of TCEP versus control, and 344 out of 387 DEGs in 90 µg/L of TCEP versus control) being significantly down-regulated, which were primarily related to immune response and immune system process. Notably, exposure to TCEP significantly reduced the relative abundance of the genera Aeromonas and Cetobacterium in the tadpole intestine. This reduction was positively correlated with the down-regulated expression of immune-related genes in the liver of corresponding tadpoles. In summary, these findings provide empirical evidence of the potential health risks to tadpoles exposed to TCEP at environmentally relevant concentrations.

2.
Environ Pollut ; 358: 124494, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968982

ABSTRACT

Tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCPP) are common chlorinated organophosphorus flame retardants (OPFRs) used in industry. They have been frequently detected together in aquatic environments and associated with various hazardous effects. However, the ecological risks of prolonged exposure to these OPFRs at environmentally relevant concentrations in non-model aquatic organisms remain unexplored. This study investigated the effects of long-term exposure (up to 25 days) to TCEP and TCPP on metamorphosis, hepatic antioxidants, and endocrine function in Polypedates megacephalus tadpoles. Exposure concentrations were set at 3, 30, and 90 µg/L for each substance, conducted independently and in equal-concentration combinations, with a control group included for comparison. The integrated biomarker response (IBR) method developed an optimal linear model for predicting the overall ecological risks of TCEP and TCPP to tadpoles in potential distribution areas of Polypedates species. Results showed that: (1) Exposure to environmentally relevant concentrations of TCEP and TCPP elicited variable adverse effects on tadpole metamorphosis time, hepatic antioxidant enzyme activity and related gene expression, and endocrine-related gene expression, with their combined exposure exacerbating these effects. (2) The IBR value of TCEP was consistently greater than that of TCPP at each concentration, with an additive effect observed under their combined exposure. (3) The ecological risk of tadpoles exposed to the combined presence of TCEP and TCPP was highest in China's Taihu Lake and Vietnam's Hanoi than in other distribution locations. In summary, prolonged exposure to environmentally relevant concentrations of TCEP and TCPP presents potential ecological risks to amphibian tadpoles, offering insights for the development of policies and strategies to control TCEP and TCPP pollution in aquatic ecosystems. Furthermore, the methodology employed in establishing the IBR prediction model provides a methodological framework for assessing the overall ecological risks of multiple OPFRs.

3.
Nanomaterials (Basel) ; 14(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38869551

ABSTRACT

Magnetic separation of photocatalysts holds great promise for water treatment. A magnetic separation method has a positive effect on the recovery of catalysts after degradation. In this paper, an efficient and reusable catalytic system is developed based on coating magnetic Fe3O4 by depositing Fe2+ on the surface of ZnO. The Fe3O4/ZnO nanocomposite exhibits enhanced performance for organic pollutant degradation. The Fe3O4/ZnO system demonstrates a high photocatalytic activity of 100% degradation efficiency in Rhodamine B (RhB) degradation under UV light irradiation for 50 min. The excellent photocatalytic activity is primarily due to the separation of photogenerated electron-hole pairs being facilitated by the strong interaction between Fe3O4 and ZnO. The induction of the magnetic Fe3O4 endows the Fe3O4/ZnO composite with superior magnetic separation capability from water. Experiments with different radical scavengers revealed that the hydroxyl radical (·OH) is the key reactive radical for the effective degradation of RhB. This work innovatively affords a common interfacial dopant deposition strategy for catalytic application in the degradation of organic dye pollutants and catalyst separation from wastewater efficiently.

4.
Aquat Toxicol ; 272: 106979, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823072

ABSTRACT

Tris(2-chloroethyl) phosphate (TCEP) and tris(1­chloro-2-propyl) phosphate (TCPP) are widely used as chlorinated organophosphate flame retardants (OPFRs) due to their fire-resistance capabilities. However, their extensive use has led to their permeation and pollution in aquatic environments. Using amphibians, which are non-model organisms, to test the toxic effects of OPFRs is relatively uncommon. This study examined the acute and chronic toxicity differences between TCEP and TCPP on Polypedates megacephalus tadpoles and evaluated the potential ecological risks to tadpoles in different aquatic environments using the risk quotient (RQ). In acute toxicity assay, the tadpole survival rates decreased with increased exposure time and concentrations, with TCEP exhibiting higher LC50 values than TCPP, at 305.5 mg/L and 70 mg/L, respectively. In the chronic assay, prolonged exposure to 300 µg/L of both substances resulted in similar adverse effects on tadpole growth, metamorphosis, and hepatic antioxidant function. Based on RQ values, most aquatic environments did not pose an ecological risk to tadpoles. However, the analysis showed that wastewater presented higher risks than rivers and drinking water, and TCPP posed a higher potential risk than TCEP in all examined aquatic environments. These findings provide empirical evidence to comprehend the toxicological effects of OPFRs on aquatic organisms and to assess the safety of aquatic environments.


Subject(s)
Anura , Flame Retardants , Larva , Organophosphates , Organophosphorus Compounds , Water Pollutants, Chemical , Animals , Flame Retardants/toxicity , Larva/drug effects , Larva/growth & development , Water Pollutants, Chemical/toxicity , Organophosphorus Compounds/toxicity , Risk Assessment , Organophosphates/toxicity , Anura/growth & development , Metamorphosis, Biological/drug effects , Toxicity Tests, Acute , Lethal Dose 50
5.
Pestic Biochem Physiol ; 201: 105892, 2024 May.
Article in English | MEDLINE | ID: mdl-38685254

ABSTRACT

As an agricultural pest, the fall armyworm (FAW), Spodoptera frugiperda, poses a severe threat to agriculture in China. Chlorantraniliprole has been widely used to control this pest. In our previous studies, we discovered that LD10, LD20, and LD30 chlorantraniliprole promoted encapsulation in the 4th instar larvae of the FAW, with LD30 chlorantraniliprole having the most significant effect. To further investigate the molecular mechanism underlying the sublethal effects of chlorantraniliprole on encapsulation in the FAW, this study conducted the effects of encapsulation in 4th instar larvae of the FAW exposed to LD30 chlorantraniliprole. Then, we analyzed the transcriptome of the FAW hemolymph treated with LD30 chlorantraniliprole and identified genes related to encapsulation using RNAi. Our results showed that the encapsulation in the FAW was enhanced at 6, 12, 18, 24, and 48 h after exposure to LD30 chlorantraniliprole. Additionally, LD30 chlorantraniliprole significantly affected the expression of certain immune-related genes, with the heat shock protein 70 family gene SfHSP68.1 showing the most significant upregulation. Subsequent interference with SfHSP68.1 resulted in a significant inhibition of encapsulation in FAW. These findings suggested that LD30 chlorantraniliprole can promote encapsulation in the FAW by upregulating SfHSP68.1 expression. This study provides valuable insights into the sublethal effects of chlorantraniliprole on encapsulation in the FAW and the interaction between encapsulation and heat shock proteins (HSPs).


Subject(s)
HSP70 Heat-Shock Proteins , Insect Proteins , Insecticides , Larva , Spodoptera , ortho-Aminobenzoates , Animals , ortho-Aminobenzoates/toxicity , ortho-Aminobenzoates/pharmacology , Spodoptera/drug effects , Spodoptera/genetics , Insecticides/toxicity , Insecticides/pharmacology , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Larva/drug effects , Insect Proteins/genetics , Insect Proteins/metabolism , Up-Regulation/drug effects
6.
J Agric Food Chem ; 72(8): 3904-3912, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38303158

ABSTRACT

The leaf skeletonizer, Pyrausta machaeralis (Lepidoptera: Crambidae), is a serious insect pest of teak (Tectona grandis) in China. The application of insect pheromones is widely applied as an environmentally friendly technology for integrated pest management (IPM). In the present study, crude extracts of sex pheromone glands of calling P. machaeralis females were collected and then analyzed using gas chromatography/electroantennographic detection (GC/EAD) and gas chromatography-mass spectrometry (GC-MS). The combination of infrared spectroscopy (IR) and nuclear magnetic resonance (NMR) spectrometry was used for structure identification. Afterward, their electrophysiological and behavioral activity was evaluated in the laboratory and field. Herein, we eventually determined two active components, E-11-tetradecenyl acetate (E11-14:Ac) and Z-11-tetradecenyl acetate (Z11-14:Ac), at a ratio of 96:4, as the sex pheromone of P. machaeralis. The identification of sex pheromones would facilitate the development of efficient strategies for monitoring and controlling the field populations of P. machaeralis.


Subject(s)
Lepidoptera , Moths , Sex Attractants , Animals , Female , Lepidoptera/physiology , Sex Attractants/chemistry , Moths/physiology , Pheromones/chemistry , Gas Chromatography-Mass Spectrometry , Biological Assay
7.
Mitochondrial DNA B Resour ; 9(1): 209-213, 2024.
Article in English | MEDLINE | ID: mdl-38298222

ABSTRACT

The mitochondrial genome (mitogenome) of Boulenophrys baishanzuensis (Anura: Megophryidae) was sequenced by the Illumina platform. The assembled circular mitogenome of B. baishanzuensis had a total length of 17,040 bp, with a GC content of 41.25%. It consisted of 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes, and a D-loop region. The majority of the PCGs were encoded by the H-strand, while one PCG (nad6) and eight tRNA genes (tRNA-Gln, tRNA-Ala, tRNA-Asn, tRNA-Cys, tRNA-Tyr, tRNA-Ser2, tRNA-Glu, and tRNA-Pro) were encoded in the L-strand. Phylogenetic analysis revealed that the newly sequenced species formed a clade with other Boulenophrys species, while the genus Boulenophrys itself formed a sister group with the genus Atympanophrys.

8.
Pathogens ; 12(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36839553

ABSTRACT

Ribosome assembly factors have been extensively studied in yeast, and their abnormalities may affect the assembly process of ribosomes and cause severe damage to cells. However, it is not clear whether mRNA turnover protein 4 (MRT4) functions in the fungal growth and pathogenicity in Sclerotinia sclerotiorum. Here, we identified the nucleus-located gene SsMRT4 using reverse genetics, and found that knockdown of SsMRT4 resulted in retard mycelia growth and complete loss of pathogenicity. Furthermore, mrt4 knockdown mutants showed almost no appressorium formation and oxalic acid production comparing to the wild-type and complementary strains. In addition, the abilities to ROS elimination and resistance to oxidative and osmotic stresses were also seriously compromised in mrt4 mutants. Overall, our study clarified the role of SsMRT4 in S. sclerotiorum, providing new insights into ribosome assembly in regulating pathogenicity and resistance to environmental stresses of fungi.

9.
Mol Immunol ; 144: 26-34, 2022 04.
Article in English | MEDLINE | ID: mdl-35172225

ABSTRACT

Disease-modifying passive immunotherapies focusing on removal of abnormal phosphorylated Tau (p-Tau) constitute promising treatments for Alzheimer's disease (AD). Although several prior immunotherapies targeting p-Tau appear to be beneficial against AD, they have limitations such as the low blood-brain barrier (BBB) penetration rate, short half-life of antibodies, and the likelihood of inflammation. To address these issues, we designed a novel immunotherapy for AD. To this end, a single chain antibody (scFv) targeting p-Tau was generated, and a recombinant adeno-associated virus that can cross the BBB (rAAV/BBB) was used as a vector to express scFv for at least 22 weeks in the mouse brain. Results showed that the scFv constructed in this study had a high affinity to p-Tau and could bind to neuronal tangles in the section of brains of AD model mice. Moreover, the rAAV/BBB could cross the BBB, infect neuronal cells, and express scFv. This novel immunotherapy could effectively deliver scFv into the brain and resulted in a continuous expression of scFv in vivo, suggesting its potential for the treatment of AD.


Subject(s)
Alzheimer Disease , Animals , Antibodies/metabolism , Brain/metabolism , Dependovirus/metabolism , Immunologic Factors , Immunotherapy , Mice , Mice, Transgenic
10.
Appl Microbiol Biotechnol ; 105(20): 7825-7839, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34562115

ABSTRACT

Phenazine-1-carboxylic acid and pyrrolnitrin, the two secondary metabolites produced by Pseudomonas chlororaphis G05, serve as biocontrol agents that mainly contribute to the growth repression of several fungal phytopathogens. Although some regulators of phenazine-1-carboxylic acid biosynthesis have been identified, the regulatory pathway involving phenazine-1-carboxylic acid synthesis is not fully understood. We isolated a white conjugant G05W03 on X-Gal-containing LB agar during our screening of novel regulator candidates using transposon mutagenesis with a fusion mutant G05Δphz::lacZ as a recipient. By cloning of DNA adjacent to the site of the transposon insertion, we revealed that a LysR-type transcriptional regulator (LTTR) gene, finR, was disrupted in the conjugant G05W03. To confirm the regulatory function of FinR, we constructed the finR-knockout mutant G05ΔfinR, G05Δphz::lacZΔfinR, and G05Δprn::lacZΔfinR, using the wild-type strain G05 and its fusion mutant derivatives as recipient strains, respectively. We found that the expressions of phz and prn operons were dramatically reduced in the finR-deleted mutant. With quantification of the production of antifungal metabolites biosynthesized by the finR-negative strain G05ΔfinR, it was shown that FinR deficiency also led to decreased yield of phenazine-1-carboxylic acid and pyrrolnitrin. In addition, the pathogen inhibition assay confirmed that the production of phenazine-1-carboxylic acid was severely reduced in the absence of FinR. Transcriptional fusions and qRT-PCR verified that FinR could positively govern the transcription of the phz and prn operons. Taken together, FinR is required for antifungal metabolite biosynthesis and crop protection against some fungal pathogens.Key points• A novel regulator FinR was identified by transposon mutagenesis.• FinR regulates antifungal metabolite production.• FinR regulates the phz and prn expression by binding to their promoter regions.


Subject(s)
Pseudomonas chlororaphis , Pyrrolnitrin , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Operon , Phenazines , Pseudomonas chlororaphis/genetics , Pseudomonas chlororaphis/metabolism
11.
Macromol Biosci ; 20(9): e2000116, 2020 09.
Article in English | MEDLINE | ID: mdl-32603032

ABSTRACT

Long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs) for relieving inflammatory reactions can lead to severe side effects. It is of great importance to configure new dosing strategies for alleviating the side effects of NSAIDs. In this work, an enzyme-responsive anti-inflammatory prodrug capable of generating indomethacin upon the trigger of inflammation is developed. A monomer is first prepared after the esterification of carboxyl groups of indomethacin by hydroxyl groups of N-(2-hydroxyethyl) acrylamide. Then, a polymer prodrug, with indomethacin linked through ester bonds on the side chain, is synthesized by free radical polymerization of the monomer. The therapeutic drug component can be triggered to release from the prodrug under the stimulation of cholesterol esterase, mimicking the inflammation environment. On the contrary, there is only a small amount of drug released in the absence of the enzyme. Therefore, the drug can be triggered to release under the stimulation of an environment mimicking inflammation. Furthermore, the in vitro studies at the cellular level indicate that the enzyme-responsive prodrug can efficiently relieve inflammatory responses induced by lipopolysaccharide in RAW264.7 macrophage cells while indicating no cytotoxicity.


Subject(s)
Drug Liberation , Inflammation/drug therapy , Prodrugs/therapeutic use , Sterol Esterase/metabolism , Animals , Cell Death/drug effects , Indomethacin/pharmacology , Indomethacin/therapeutic use , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Mice , Nitric Oxide/metabolism , Prodrugs/chemical synthesis , Prodrugs/chemistry , Prodrugs/pharmacology , Proton Magnetic Resonance Spectroscopy , RAW 264.7 Cells , Reference Standards
12.
Dalton Trans ; 49(13): 4060-4066, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32129379

ABSTRACT

Herein we report a new 4-fold interpenetrated metal-organic framework (MOF) functionalized with O- groups for selective Th(iv) capture, the activated samples 1a exhibited a high adsorption capacity for pure Th(iv) ions (Kd = 3.16 × 105 mL g-1) and the amount of metal ions adsorbed on the adsorbent was 165.61 mg g-1. A high removal efficiency of 99.75% was achieved within 10 min with an initial Th(iv) concentration of 100 mg L-1 and the adsorption data followed the pseudo-second-order model. In addition, the separation coefficient (S) of Th(iv) to metal ions with different valence states such as Th(iv)/La(iii), Th(iv)/Sm(iii), Th(iv)/Ho(iii), Th(iv)/Cd(ii) and Th(iv)/K(i) achieved values of 19.66, 26.83, 16.90, 11.26 and 255.79, respectively. Even given the fact that MOFs with O- groups showed high affinity for Pb(ii) ions, our adsorption studies for compound 1a revealed a separation coefficient (STh(IV)/Pb(II)) of 4.36. Further, the adsorption of Th(iv) ions to compound 1a was investigated by FT-IR, SEM-EDS and XPS.

13.
Nanomedicine ; 17: 124-136, 2019 04.
Article in English | MEDLINE | ID: mdl-30668985

ABSTRACT

The traditional Chinese medicine icariin (ICA) and broad-spectrum antibacterial drug moxifloxacin hydrochloride (MOX) were introduced into a polycaprolactone core and gelatin shell, respectively, to develop osteogenic and antibacterial biomimetic periosteum by coaxial electrospinning. The physical properties, drug release, degradation, antibacterial property, in vitro and in vivo osteogenesis performances were investigated. Results demonstrated that stepwise and controlled drug release profiles were achieved based on the core-shell configuration and disparate degradation rate of PCL and gelatin. Only 20% ICA was released from this dual drug-loaded membrane after 1 month while the release of MOX was almost completed. Moreover, clear in vitro antibacterial effect and enhancement in osteogenic marker expressions including osteocalcin, type-I collagen expression, and calcium deposition were observed. Notably, the dual drug-loaded membrane displayed fascinating properties contributing to in vivo bone formation in terms of quality and quantity in a rabbit radius defect model.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Drugs, Chinese Herbal/administration & dosage , Flavonoids/administration & dosage , Moxifloxacin/administration & dosage , Nanofibers/chemistry , Polyesters/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemistry , Biomimetic Materials/chemistry , Bone Regeneration/drug effects , Cell Line , Drugs, Chinese Herbal/pharmacology , Flavonoids/pharmacology , Gelatin/chemistry , Membranes, Artificial , Mice , Moxifloxacin/pharmacology , Nanofibers/ultrastructure , Osteogenesis/drug effects , Periosteum/chemistry , Rabbits , Tissue Scaffolds/chemistry
14.
Colloids Surf B Biointerfaces ; 170: 201-209, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29909312

ABSTRACT

Due to the significant role of the periosteum in bone regeneration, we hypothesised that using a specially engineered artificial periosteum could lead to an enhancement in osteogenesis in bone grafts. Herein, we describe our work aimed at fabricating an electrospun fibrous membrane as an artificial periosteum that exhibits flexibility, permeability and osteoinduction. This membrane was designed to cover the complex surface of bone grafts to facilitate and accelerate bone regeneration. The traditional Chinese medicine icariin (ICA) was subsequently introduced into poly (ε-caprolactone) (PCL) /gelatin nanofibers to fabricate an artificial periosteum for the first time. The effects of ICA content on morphology, physical properties, drug release profile, in vitro degradability, biocompatibility and osteogenic differentiation properties were investigated. The ICA-loaded electrospun membranes showed significant improvement in hydrophilicity, high mechanical strength, appropriate degradation rates and excellent biocompatibility. Furthermore, clear enhancement in alkaline phosphatase (ALP) activity, as well as an increase in osteocalcin (OCN) and type collagen I (COL I) expression in MC3T3-E1 cells were detected. Furthermore, we observed clear calcium deposition content in MC3T3-E1 cells cultured on ICA-loaded fibrous matrix. The membrane loaded with 0.05 wt.% ICA displayed properties contributing to cell attachment, proliferation and differentiation. These results indicate the huge potential of this ICA-loaded PCL/gelatin electrospun membrane as a biomimetic artificial periosteum to accelerate bone regeneration.


Subject(s)
Flavonoids/chemistry , Gelatin/chemistry , Nanofibers/chemistry , Periosteum/chemistry , Polyesters/chemistry , Particle Size , Surface Properties
15.
Biotechnol Prog ; 31(5): 1201-11, 2015.
Article in English | MEDLINE | ID: mdl-25919541

ABSTRACT

This case study addresses the difficulty in achieving high level expression and production of a small, very positively charged recombinant protein. The novel challenges with this protein include the protein's adherence to the cell surface and its inhibitory effects on Chinese hamster ovary (CHO) cell growth. To overcome these challenges, we utilized a multi-prong approach. We identified dextran sulfate as a way to simultaneously extract the protein from the cell surface and boost cellular productivity. In addition, host cells were adapted to grow in the presence of this protein to improve growth and production characteristics. To achieve an increase in productivity, new cell lines from three different CHO host lines were created and evaluated in parallel with new process development workflows. Instead of a traditional screen of only four to six cell lines in bioreactors, over 130 cell lines were screened by utilization of 15 mL automated bioreactors (AMBR) in an optimal production process specifically developed for this protein. Using the automation, far less manual intervention is required than in traditional bench-top bioreactors, and much more control is achieved than typical plate or shake flask based screens. By utilizing an integrated cell line and process development incorporating medium optimized for this protein, we were able to increase titer more than 10-fold while obtaining desirable product quality. Finally, Monte Carlo simulations were performed to predict the optimal number of cell lines to screen in future cell line development work with the goal of systematically increasing titer through enhanced cell line screening.


Subject(s)
Cell Culture Techniques , Gene Expression Regulation , Recombinant Proteins/biosynthesis , Animals , Automation , Batch Cell Culture Techniques , Bioreactors , CHO Cells , Computer Simulation , Cricetinae , Cricetulus , Monte Carlo Method
16.
J Microbiol Biotechnol ; 25(4): 537-46, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25370727

ABSTRACT

Classical swine fever (CSF) is a highly contagious disease of pigs caused by CSF virus (CSFV). E2 is the major viral envelope protein of immune dominance that induces neutralizing antibodies and confers protection against CSFV infection. The B/C domains of E2 are variable among CSFV isolates, which could affect immunogenicity and binding to antibodies. We attempted to characterize the epitope recognized by a monoclonal antibody 2B6 (mAb-2B6) raised against the E2 B/C domains of the vaccine C-strain and to examine if mutations in the epitope region would affect antibody binding and viral neutralization. The epitope specific for mAb-2B6 recognition is linear, spanning five residues (774)DGXNP(778) in the B/C domains. The residue N777 is indispensable for the specificity. The epitope exists only in group 1 strains, but not in those of group 2. The recombinant viruses containing individual mutations on the epitope region lost the reactivity to mAb-2B6. The mutant virus RecC-N777S had low replication potential, about 10-fold decrease in the yield of progeny virus particles, whereas the mutant virus RecC-P778A reverted to proline upon continuous passaging. The mutations on the mAb-2B6 epitope region did not affect neutralization by anti-C-strain polyclonal sera from pigs. Deletion from aa774 covering the mAb-2B6 epitope, but not that from aa781, also affected binding with the polyclonal antibodies from vaccinated pigs, although the major binding region for the vaccinated antibodies is aa690-773.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Classical Swine Fever Virus/physiology , Epitopes/immunology , Protein Interaction Domains and Motifs/immunology , Viral Envelope Proteins/immunology , Virus Replication , Amino Acid Substitution , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Cell Line , Epitope Mapping , Epitopes/metabolism , Genotype , Mutation , Neutralization Tests , Protein Binding/immunology , Swine , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...