Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Heart Assoc ; 6(5)2017 May 09.
Article in English | MEDLINE | ID: mdl-28487390

ABSTRACT

BACKGROUND: The amino acid response (AAR) is an evolutionarily conserved protective mechanism activated by amino acid deficiency through a key kinase, general control nonderepressible 2. In addition to mobilizing amino acids, the AAR broadly affects gene and protein expression in a variety of pathways and elicits antifibrotic, autophagic, and anti-inflammatory activities. However, little is known regarding its role in cardiac stress. Our aim was to investigate the effects of halofuginone, a prolyl-tRNA synthetase inhibitor, on the AAR pathway in cardiac fibroblasts, cardiomyocytes, and in mouse models of cardiac stress and failure. METHODS AND RESULTS: Consistent with its ability to inhibit prolyl-tRNA synthetase, halofuginone elicited a general control nonderepressible 2-dependent activation of the AAR pathway in cardiac fibroblasts as evidenced by activation of known AAR target genes, broad regulation of the transcriptome and proteome, and reversal by l-proline supplementation. Halofuginone was examined in 3 mouse models of cardiac stress: angiotensin II/phenylephrine, transverse aortic constriction, and acute ischemia reperfusion injury. It activated the AAR pathway in the heart, improved survival, pulmonary congestion, left ventricle remodeling/fibrosis, and left ventricular function, and rescued ischemic myocardium. In human cardiac fibroblasts, halofuginone profoundly reduced collagen deposition in a general control nonderepressible 2-dependent manner and suppressed the extracellular matrix proteome. In human induced pluripotent stem cell-derived cardiomyocytes, halofuginone blocked gene expression associated with endothelin-1-mediated activation of pathologic hypertrophy and restored autophagy in a general control nonderepressible 2/eIF2α-dependent manner. CONCLUSIONS: Halofuginone activated the AAR pathway in the heart and attenuated the structural and functional effects of cardiac stress.


Subject(s)
Amino Acids/metabolism , Enzyme Inhibitors/pharmacology , Fibroblasts/drug effects , Heart Failure/prevention & control , Myocytes, Cardiac/drug effects , Piperidines/pharmacology , Protein Synthesis Inhibitors/pharmacology , Quinazolinones/pharmacology , Stress, Physiological , Amino Acids/deficiency , Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Amino Acyl-tRNA Synthetases/metabolism , Animals , Autophagy/drug effects , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/physiopathology , Humans , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/prevention & control , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Male , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Protein Serine-Threonine Kinases/metabolism , Time Factors , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL