Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3612-3622, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37474994

ABSTRACT

This study aimed to analyze the effect of Bletilla striata polysaccharide(BSP) on endogenous metabolites in serum of tumor-bearing mice treated with 5-fluorouracil(5-FU) by untargeted metabolomics techniques and explore the mechanism of BSP in alleviating the toxic and side effects induced by 5-FU. Male BALB/C mice were randomly divided into a normal group, a model group, a 5-FU group, and a 5-FU + BSP group, with eight mice in each group. Mouse colon cancer cells(CT26) were transplanted into the mice except for those in the normal group to construct the tumor-bearing mouse model by subcutaneous injection, and 5-FU chemotherapy and BSP treatment were carried out from the second day of modeling. The changes in body weight, diarrhea, and white blood cell count in the peripheral blood were recorded. The mice were sacrificed and sampled when the tumor weight of mice in the model group reached approximately 1 g. TUNEL staining was used to detect the cell apoptosis in the small intestine of each group. The proportions of hematopoietic stem cells and myeloid progenitor cells in bone marrow were measured by flow cytometry. Five serum samples were selected randomly from each group for untargeted metabolomics analysis. The results showed that BSP was not effective in inhibiting colon cancer in mice, but diarrhea, leukopenia, and weight loss caused by 5-FU chemotherapy were significantly improved after BSP intervention. In addition, apoptotic cells decreased in the small intestinal tissues and the percentages of hematopoietic stem cells and myeloid progenitor cells in bone marrow were significantly higher after BSP treatment. Metabolomics results showed that the toxic and side effects of 5-FU resulted in significant decrease in 29 metabolites and significant increase in 22 metabolites in mouse serum. Among them, 19 disordered metabolites showed a return to normal levels in the 5-FU+BSP group. The results of pathway enrichment indicated that metabolic pathways mainly involved pyrimidine metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis. Therefore, BSP may ameliorate the toxic and side effects of 5-FU in the intestinal tract and bone marrow presumably by regulating nucleotide synthesis, inflammatory damage, and hormone production.


Subject(s)
Colonic Neoplasms , Fluorouracil , Animals , Male , Mice , Colonic Neoplasms/drug therapy , Diarrhea , Fluorouracil/adverse effects , Hormones , Metabolomics , Mice, Inbred BALB C , Polysaccharides/pharmacology
2.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2325-2333, 2023 May.
Article in Chinese | MEDLINE | ID: mdl-37282861

ABSTRACT

The study aimed to investigate the effect of anemoside B4(B4) on fatty acid metabolism in mice with colitis-associated cancer(CAC). The CAC model was established by azoxymethane(AOM)/dextran sodium sulfate(DSS) in mice. Mice were randomly divided into a normal group, a model group, and low-, medium-, and high-dose anemoside B4 groups. After the experiment, the length of the mouse colon and the size of the tumor were measured, and the pathological alterations in the mouse colon were observed using hematoxylin-eosin(HE) staining. The slices of the colon tumor were obtained for spatial metabolome analysis to analyze the distribution of fatty acid metabolism-related substances in the tumor. The mRNA levels of SREBP-1, FAS, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 were determined by real-time quantitative PCR(RT-qPCR). The results revealed that the model group showed decreased body weight(P<0.05) and colon length(P<0.001), increased number of tumors, and increased pathological score(P<0.01). Spatial metabolome analysis revealed that the content of fatty acids and their derivatives, carnitine, and phospholipid in the colon tumor was increased. RT-qPCR results indicated that fatty acid de novo synthesis and ß-oxidation-related genes, such as SREBP-1, FASN, ACCα, SCD-1, ACOX, UCP-2, and CPT-1 mRNA expression levels increased considerably(P<0.05, P<0.001). After anemoside B4 administration, the colon length increased(P<0.01), and the number of tumors decreased in the high-dose anemoside B4 group(P<0.05). Additionally, spatial metabolome analysis showed that anemoside B4 could decrease the content of fatty acids and their derivatives, carnitine, and phospholipids in colon tumors. Meanwhile, anemoside B4 could also down-regulate the expression of FASN, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 in the colon(P<0.05, P<0.01, P<0.001). The findings of this study show that anemoside B4 may inhibit CAC via regulating fatty acid metabolism reprogramming.


Subject(s)
Colitis-Associated Neoplasms , Colitis , Colonic Neoplasms , Mice , Animals , Sterol Regulatory Element Binding Protein 1 , PPAR alpha/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colon , Azoxymethane , RNA, Messenger , Dextran Sulfate , Colitis/chemically induced , Colitis/complications , Colitis/drug therapy , Mice, Inbred C57BL , Disease Models, Animal
3.
Zhongguo Zhong Yao Za Zhi ; 46(14): 3660-3671, 2021 Jul.
Article in Chinese | MEDLINE | ID: mdl-34402290

ABSTRACT

To study the effect of anemoside B4 on rats with chronic obstructive pulmonary disease (COPD).Seventy-two SD male rats were randomly divided into blank group and model group.The method of exposure to cigarette smoke and combined with lipopolysaccharide (LPS) was used to replicate the rat model of COPD.After the model was maintained for 5 weeks,the rats were randomly divided into model group,dexamethasone group (0.81 mg·kg~(-1)) and anemoside B4 low,medium and high (2,4,8 mg·kg~(-1)) dose groups,a group of 12 animals were administered,and then the administration was started.The administration was maintained until the28th day,and the pulmonary function parameters of rats were measured by an animal pulmonary function instrument.After testing the rat lung function parameters,immediately draw rat alveolar lavage fluid (BALF),and use high-throughput protein chip technology to determined the expression levels of inflammatory cytokines in rat BALF.HE staining was used to observe the general pathological changes of rat lung and tracheal tissue.Masson staining was used to observe the collagen deposition in rat lung tissue.Real-time q PCR method was used to determine the mRNA expression level of related genes in rat lung tissue.Western blot method was used to determine the expression levels of related proteins in rat lung tissues.According to the findings,compared with the model group,the dexamethasone group and the anemoside B4 drug groups had different degrees of increase in the lung function parameters of rats (P<0.01,P<0.05),improved the expression level of inflammatory cytokines in the BALF of rats to varying degrees (P<0.01,P<0.05),and improved the pathological structure of rat lung tissue to varying degrees.Relative mRNA expressions of matrix metalloproteinase 2 (MMP-2),matrix metalloproteinase 12 (MMP-12),matrix metalloproteinase inhibitor 1 (TIMP-1),interleukin-6 (IL-6),and transforming growth factor-ß1 (TGF-ß1) were significantly reduced (P<0.01);whereas relative mRNA expressions of matrix metalloproteinase 9(MMP-9) and matrix metalloproteinase inhibitor 2 (TIMP-2) were increased significantly (P<0.01).The mRNA and protein expression levels of T-box transcription factor (T-bet),interleukin-12 (IL-12) and signal transducer and activator of transcription 4(STAT4) reduced to varying degrees (P<0.01,P<0.05).The mRNA of transcription factor GATA3 (binding protein-3),interleukin-4 (IL-4) and signal transducer and activator of transcription 6 (STAT6) in rat lung tissues and the protein expression levels of IL-4 and STAT6 were increased to varying degrees (P<0.01,P<0.05).In conclusion,anemoside B4 has a certain protective effect on COPD rats caused by cigarette smoke exposure and combined with LPS.The mechanism of action may be related to the regulation of IL-12/STAT4 and IL-4/STAT6 signaling pathways.


Subject(s)
Pulmonary Disease, Chronic Obstructive , STAT4 Transcription Factor , Animals , Interleukin-12 , Interleukin-4 , Lung/metabolism , Male , Matrix Metalloproteinase 2 , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/genetics , Rats , STAT4 Transcription Factor/metabolism , STAT6 Transcription Factor/metabolism , Saponins
4.
Pharm Biol ; 58(1): 1156-1166, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33222562

ABSTRACT

CONTEXT: The Traditional Chinese herb medicine Dalbergia odorifera T. Chen (Fabaceae), exerted a protective effect on myocardial ischaemia. Latifolin is a neoflavonoid extracted from Dalbergia odorifera. It has been reported to have the effects of anti-inflammation and cardiomyocyte protection. OBJECTIVE: To investigate whether latifolin can improve myocardial infarction (MI) through attenuating myocardial inflammatory and to explore its possible mechanisms. MATERIALS AND METHODS: Left coronary artery was ligated to induce a rat model of MI, and the rats were treated with sodium carboxymethyl cellulose (CMC-Na) or different doses of latifolin (25, 50, 100 mg/kg/d) by oral gavage for 28 days. Serum contents of myocardial enzyme were measured at seven and fourteen days after treatment. Cardiac function, infarct size, histopathological changes and inflammatory cells infiltration was assessed at 28 days after treatment. Western blotting was used to investigate the underlying mechanisms. RESULTS: Latifolin treatment markedly decreased the contents of myocardial enzymes, and increased left ventricular ejection fraction (85.27% vs. 59.11%) and left ventricular fractional shortening (62.71% vs. 45.53%). Latifolin was found to significantly reduced infarction size (27.78% vs. 39.07%), myocardial fibrosis and the numbers of macrophage infiltration (436 cells/mm2 vs. 690 cells/mm2). In addition, latifolin down-regulated the expression levels of hypoxia-inducible factor-1α (0.95-fold), phospho-nuclear factor-κB (0.2-fold) and interleukin-6 (1.11-fold). DISCUSSION AND CONCLUSIONS: Latifolin can protect against myocardial infarction by improving myocardial inflammation through the HIF-1α/NF-κB/IL-6 signalling pathway. Accordingly, latifolin may be a promising drug for pharmacological treatment of ischaemic cardiovascular disease.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/drug effects , Interleukin-6 , Myocardial Infarction/prevention & control , Myocarditis/drug therapy , NF-kappa B/drug effects , Phenols/therapeutic use , Signal Transduction/drug effects , Animals , Dalbergia/chemistry , Enzymes/blood , Heart Function Tests , Male , Medicine, Chinese Traditional , Myocardial Infarction/pathology , Myocarditis/pathology , Myocardium/pathology , Rats , Rats, Sprague-Dawley , Stroke Volume
SELECTION OF CITATIONS
SEARCH DETAIL
...