Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 684
Filter
1.
Int J Oncol ; 65(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-39219273

ABSTRACT

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that, in Fig. 3 on p. 1510, the western blot images selected to portray the caspase 7 and PARP/cleaved PARP experiments were remarkably similar. After having referred to their original data, the authors realized that the PARP/cleaved PARP blots had been inadvertently duplicated in the figure. The revised version of Fig. 3, showing the correct data for the caspase­7 experiment, is shown below. The authors confirm that the errors made during the assembly of Fig. 3 did not adversely affect the major conclusions presented in this paper, and are grateful to the Editor of International Journal of Oncology for allowing them this opportunity to publish a corrigendum. They also apologize to the readership for any inconvenience caused. [International Journal of Oncology 46: 1507­1515, 2015; DOI: 10.3892/ijo.2015.2869].

2.
Int J Mol Sci ; 25(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39273091

ABSTRACT

Rabies is a fatal neurological infectious disease caused by rabies virus (RABV), which invades the central nervous system (CNS). RABV with varying virulence regulates chemokine expression, and the mechanisms of signaling pathway activation remains to be elucidated. The relationship between Toll-like receptors (TLRs) and immune response induced by RABV has not been fully clarified. Here, we investigated the role of TLR7 in the immune response induced by RABV, and one-way analysis of variance (ANOVA) was employed to evaluate the data. We found that different RABV strains (SC16, HN10, CVS-11) significantly increased CCL2, CXCL10 and IL-6 production. Blocking assays indicated that the TLR7 inhibitor reduced the expression of CCL2, CXCL10 and IL-6 (p < 0.01). The activation of the Myd88 pathway in BV-2 cells stimulated by RABV was TLR7-dependent, whereas the inhibition of Myd88 activity reduced the expression of CCL2, CXCL10 and IL-6 (p < 0.01). Meanwhile, the RABV stimulation of BV-2 cells resulted in TRL7-mediated activation of NF-κB and induced the nuclear translocation of NF-κB p65. CCL2, CXCL10 and IL-6 release was attenuated by the specific NF-κB inhibitor used (p < 0.01). The findings above demonstrate that RABV-induced expression of CCL2, CXCL10 and IL-6 involves Myd88 and NF-κB pathways via the TLR7 signal.


Subject(s)
Myeloid Differentiation Factor 88 , NF-kappa B , Rabies virus , Signal Transduction , Toll-Like Receptor 7 , Toll-Like Receptor 7/metabolism , Animals , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Rabies virus/pathogenicity , Rabies virus/immunology , Mice , NF-kappa B/metabolism , Cell Line , Interleukin-6/metabolism , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Rabies/virology , Rabies/metabolism , Rabies/immunology , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Inflammation/metabolism
3.
Sci Rep ; 14(1): 21648, 2024 09 17.
Article in English | MEDLINE | ID: mdl-39289452

ABSTRACT

Helicobacter pylori (H. pylori) is one of the most common bacterial infections in the world, and its key virulence component CagA is the leading cause of gastric cancer. Mitophagy is a form of selective autophagy that eliminates damaged mitochondria and is essential for some viruses and bacteria to evade the immune system. However, the mechanisms by which CagA mediates H. pylori-induced mitophagy and NLRP3 inflammasome activation remain elusive. In this study, we reported that H. pylori primarily uses its CagA to induce mitochondrial oxidative damage, mitochondrial dysfunction, dynamic imbalance, and to block autophagic flux. Inhibition of mitophagy led to an increase in NLRP3 inflammasome activation and apoptosis and a decrease in the viability of H. pylori-infected cells. Our findings suggested that H. pylori induces mitochondrial dysfunction and mitophagy primarily via CagA. It reduces NLRP3 inflammasome activation to evade host immune surveillance and increases the survival and viability of infected cells, potentially leading to gastric cancer initiation and development. Our findings provide new insights into the pathogenesis of H. pylori-induced gastric cancer, and inhibition of mitophagy may be one of the novel techniques for the prevention and treatment of this disease.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Helicobacter pylori , Inflammasomes , Mitochondria , Mitophagy , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Inflammasomes/metabolism , Helicobacter pylori/pathogenicity , Helicobacter pylori/physiology , Humans , Mitochondria/metabolism , Helicobacter Infections/microbiology , Helicobacter Infections/metabolism , Helicobacter Infections/immunology , Cell Survival , Stomach Neoplasms/microbiology , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Apoptosis
4.
J Glaucoma ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39311802

ABSTRACT

PRCIS: Hypobaric hypoxia, the major environmental factor at high altitudes, has been observed to induce pupil miosis and widening of the anterior chamber angle. This environment may be safe for individuals with narrow angle and deserves further study. PURPOSE: This study aimed to quantify anterior chamber biometric parameters before and after acute short-term, effortless exposure to hypobaric hypoxia (HH) in healthy lowlanders using swept-source anterior segment optical coherence tomography (SS AS-OCT). METHODS: This prospective study included 25 healthy young lowlanders (50 eyes) who underwent SS AS-OCT measurements and intraocular pressure (IOP) assessments under baseline sea-level conditions (T1).They were then passively exposed to simulated 4000 m above sea level for 3 hours and underwent Acute mountain sickness (AMS) symptoms evaluation and IOP measurement after 2-hours exposure to HH (T2).Repeat SS AS-OCT measurements and IOP assessments were taken within 15 minutes after leaving the hypobaric chamber (T3). Anterior segment parameters including anterior chamber depth (ACD),lens vault (LV),angle opening distance (AOD500), trabecular-iris space area (TISA500), angle recess area (ARA500) at 500 µm from the scleral spur, iris curvature (IC), iris volume (IV), pupil diameter (PD), and central corneal thickness (CCT) were obtained through SS AS-OCT. These repeated measurements were compared using linear mixed model analysis. RESULTS: In comparison to sea level, both IOP (16.4±3.4 vs. 14.9±2.4 mm Hg, P=0.029) and PD (5.36±0.77 vs. 4.78±0.89 mm, P=0.001) significantly decreased after exposure to HH. Significant post-HH changes (Mean difference (95% CI)) were observed in AOD500 (0.129 (0.006, 0.252), P=0.04), TISA500 (0.059 (0.008, 0.11), P=0.025), ARA500 (0.074 (0.008, 0.141), P=0.029), IV (1.623 (0.092, 3.154), P=0.038), and IC (-0.073 (-0.146, 0.001), P=0.047), while CCT, ACD, and LV remained stable. After adjusting for age, post-HH variations in AOD500 (Beta=0.553, 95% CI: 0.001, 1.105, P=0.048) and TISA500 (Beta=0.256, 95% CI: 0.02, 0.492, P=0.034) were associated with decreased IC but were not related to lowered arterial oxygen pressure or IV increase per millimeter of pupil miosis (IV/PD). These differences in anterior segment parameters were neither correlated with differences in IOP nor AMS. CONCLUSION: After short-term, effortless exposure to hypobaric hypoxia, pupil miosis occurred with widening of the anterior chamber angle and decreased IC. These changes in anterior chamber angle parameters were associated with decreased IC but did not correlate with the post-hypobaric variations in IV/PD, IOP, or AMS.

5.
Heliyon ; 10(17): e36494, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39281556

ABSTRACT

Rabies is a highly lethal infectious disease with no existing treatment available, thus investigating effective antiviral compounds to control rabies virus (RABV) infection is of utmost importance. Resveratrol is a natural phenolic compound that, as a phytoalexin, exhibits several biological activities, including antiviral activity. In this study, we evaluated the inhibitory effect of resveratrol on RABV infection and investigated its molecular antiviral mechanism. We found that resveratrol significantly inhibited RABV infection, including the phases of adsorption, replication, and release, and also directly inactivated RABV and inhibited its infectivity. However, resveratrol had no significant effect on RABV internalization. Resveratrol also reduced RABV-induced oxidative stress, specifically reactive oxygen species and malondialdehyde levels. Western blotting analysis revealed that resveratrol enhanced antioxidant signaling via the SIRT1/Nrf2/HO-1 pathway and inhibited viral replication. Viral infection was enhanced after SIRT1 knockdown, which inhibited the SIRT1/Nrf2/HO-1 antioxidant signaling pathway, suggesting that this pathway plays an important role in RABV replication. Overall, resveratrol prevented the adsorption, replication, and release of RABV and directly inactivated RABV, but failed to inhibit RABV internalization. Furthermore, resveratrol activated the SIRT1/Nrf2/HO-1 pathway to inhibit RABV replication and suppressed RABV-induced oxidative stress. These findings highlight the therapeutic potential of resveratrol for fighting RABV infections.

6.
Nat Commun ; 15(1): 6947, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138174

ABSTRACT

Fluxes in human copper levels recently garnered attention for roles in cellular signaling, including affecting levels of the signaling molecule cyclic adenosine monophosphate. We herein apply an unbiased temporal evaluation of the signaling and whole genome transcriptional activities modulated by copper level fluctuations to identify potential copper sensor proteins responsible for driving these activities. We find that fluctuations in physiologically relevant copper levels modulate EGFR signal transduction and activation of the transcription factor CREB. Both intracellular and extracellular assays support Cu1+ inhibition of the EGFR phosphatase PTPN2 (and potentially PTPN1)-via ligation to the PTPN2 active site cysteine side chain-as the underlying mechanism. We additionally show i) copper supplementation drives weak transcriptional repression of the copper importer CTR1 and ii) CREB activity is inversely correlated with CTR1 expression. In summary, our study reveals PTPN2 as a physiological copper sensor and defines a regulatory mechanism linking feedback control of copper stimulated EGFR/CREB signaling and CTR1 expression.


Subject(s)
Copper Transporter 1 , Copper , Cyclic AMP Response Element-Binding Protein , ErbB Receptors , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Signal Transduction , ErbB Receptors/metabolism , ErbB Receptors/genetics , Copper/metabolism , Humans , Cyclic AMP Response Element-Binding Protein/metabolism , Copper Transporter 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Transcription, Genetic/drug effects
7.
Cell Host Microbe ; 32(9): 1519-1535.e7, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39106870

ABSTRACT

Identification of potential bacterial players in colorectal tumorigenesis has been a focus of intense research. Herein, we find that Clostridium symbiosum (C. symbiosum) is selectively enriched in tumor tissues of patients with colorectal cancer (CRC) and associated with higher colorectal adenoma recurrence after endoscopic polypectomy. The tumorigenic effect of C. symbiosum is observed in multiple murine models. Single-cell transcriptome profiling along with functional assays demonstrates that C. symbiosum promotes the proliferation of colonic stem cells and enhances cancer stemness. Mechanistically, C. symbiosum intensifies cellular cholesterol synthesis by producing branched-chain amino acids (BCAAs), which sequentially activates Sonic hedgehog signaling. Low dietary BCAA intake or blockade of cholesterol synthesis by statins could partially abrogate the C. symbiosum-induced cell proliferation in vivo and in vitro. Collectively, we reveal C. symbiosum as a bacterial driver of colorectal tumorigenesis, thus identifying a potential target in CRC prediction, prevention, and treatment.


Subject(s)
Amino Acids, Branched-Chain , Carcinogenesis , Cell Proliferation , Cholesterol , Colorectal Neoplasms , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Cholesterol/metabolism , Animals , Humans , Mice , Amino Acids, Branched-Chain/metabolism , Clostridium/metabolism , Clostridium/genetics , Signal Transduction , Hedgehog Proteins/metabolism , Cell Line, Tumor , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Male , Female
8.
Oral Oncol ; 157: 106985, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39126750

ABSTRACT

BACKGROUND: Immune-related characteristics can serve as reliable prognostic biomarkers in various cancers. Herein, we aimed to construct an individualized immune prognostic signature in nasopharyngeal carcinoma (NPC). METHODS: This study retrospectively included 455 NPC samples and 39 normal healthy nasopharyngeal tissue specimens. Samples from Gene Expression Omnibus (GEO) were obtained as discovery cohort to screen candidate prognostic immune-related gene pairs based on relative expression ordering of the genes. Quantitative real-time reverse transcription-PCR was used to detect the selected genes to construct an immune-related gene pair signature in training cohort, which comprised 118 clinical samples, and was then validated in validation cohort 1, comprising 92 clinical samples, and validation cohort 2, comprising 88 samples from GEO. RESULTS: We identified 26 immune-related gene pairs as prognostic candidates in discovery cohort. A prognostic immune signature comprising 11 immune gene pairs was constructed in training cohort. In validation cohort 1, the immune signature could significantly distinguish patients with high or low risk in terms of progression-free survival (PFS) (hazard ratio [HR] 2.66, 95 % confidence interval (CI) 1.17-6.02, P=0.015) and could serve as an independent prognostic factor for PFS in multivariate analysis (HR 2.66, 95 % CI 1.17-6.02, P=0.019). Similar results were obtained using validation cohort 2, in which PFS was significantly worse in high risk group than in low risk group (HR 3.02, 95 % CI 1.12-8.18, P=0.022). CONCLUSIONS: The constructed immune signature showed promise for estimating prognosis in NPC. It has potential for translation into clinical practice after prospective validation.


Subject(s)
Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/mortality , Male , Female , Prognosis , Middle Aged , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/immunology , Nasopharyngeal Neoplasms/pathology , Retrospective Studies , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Adult , Aged , Gene Expression Regulation, Neoplastic
9.
Article in English | MEDLINE | ID: mdl-39208046

ABSTRACT

Combining LiDAR points and images for robust semantic segmentation has shown great potential. However, the heterogeneity between the two modalities (e.g. the density, the field of view) poses challenges in establishing a bijective mapping between each point and pixel. This modality alignment problem introduces new challenges in network design and data processing for cross-modal methods. Specifically, 1) points that are projected outside the image planes; 2) the complexity of maintaining geometric consistency limits the deployment of many data augmentation techniques. To address these challenges, we propose a cross-modal knowledge imputation and transition approach. First, we introduce a bidirectional feature fusion strategy that imputes missing image features and performs cross-modal fusion simultaneously. This allows us to generate reliable predictions even when images are missing. Second, we propose a Uni-to-Multi modal Knowledge Distillation (U2MKD) framework, leveraging the transfer of informative features from a single-modality teacher to a cross-modality student. This overcomes the issues of augmentation misalignment and enables us to train the student effectively. Extensive experiments on the nuScenes, Waymo, and SemanticKITTI datasets demonstrate the effectiveness of our approach. Notably, our method achieves an 8.3 mIoU gain over the LiDAR-only baseline on the nuScenes validation set and achieves state-of-the-art performance on the three datasets.

10.
Neuron ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39191260

ABSTRACT

The blood-brain barrier (BBB) serves as a crucial vascular specialization, shielding and nourishing brain neurons and glia while impeding drug delivery. Here, we conducted single-cell mRNA sequencing of human cerebrovascular cells from 13 surgically resected glioma samples and adjacent normal brain tissue. The transcriptomes of 103,230 cells were mapped, including 57,324 endothelial cells (ECs) and 27,703 mural cells (MCs). Both EC and MC transcriptomes originating from lower-grade glioma were indistinguishable from those of normal brain tissue, whereas transcriptomes from glioblastoma (GBM) displayed a range of abnormalities. Among these, we identified LOXL2-dependent collagen modification as a common GBM-dependent trait and demonstrated that inhibiting LOXL2 enhanced chemotherapy efficacy in both murine and human patient-derived xenograft (PDX) GBM models. Our comprehensive single-cell RNA sequencing-based molecular atlas of the human BBB, coupled with insights into its perturbations in GBM, holds promise for guiding future investigations into brain health, pathology, and therapeutic strategies.

11.
Front Neurol ; 15: 1459392, 2024.
Article in English | MEDLINE | ID: mdl-39206293

ABSTRACT

Objective: Epilepsy-related stigma is a global problem, yet there has been an inadequate focus on children and adolescents. The purpose of this study was to determine the status quo of stigma and its determinants among children and adolescents with epilepsy in China. Methods: A multicenter cross-sectional study was conducted across nine hospitals in eight cities within six provinces in China from 10 October 2023 to 15 June 2024. Participants included patients aged 8 to 18 years with epilepsy and their caregivers. Felt stigma was assessed with the Kilifi Stigma Scale for Epilepsy (KSSE). Social support and self-efficacy were collected through the Social Support Rating Scale (SSRS) and the Generalized Self-Efficacy Scale (GSES). The data were analyzed using t-tests, analysis of variance (ANOVA), Spearman correlation analysis, and multiple linear regression analysis. Results: The study enrolled 281 children and adolescents, with a mean age of 12.25 years (SD = 2.56), including 46.6% females. A total of 35.6% participants had self-reported felt stigma. The mean KSSE score is 9.58 (SD = 7.11). Meanwhile, stigma scores correlated strongly with reduced social support (r = -0.55, p < 0.01) and self-efficacy (r = -0.43, p < 0.01). Place of residence (rural vs. non-rural), academic performance (average and above vs. fair or poor), region (western region vs. non-western region), duration of epilepsy (≤5 years vs. >5 years), drug-resistant epilepsy (yes vs. no), comorbidities (yes vs. no), social support and self-efficacy are major influencing factors among the complex factors influencing the felt stigma among children and adolescents. Conclusion: Medical staff should be more aware of stigma among children and adolescents with epilepsy, especially those who live in rural and western areas, have poor academic performance, have epilepsy duration of more than 5 years, have drug-resistant epilepsy, and have comorbidities, who are at higher risk of stigma. It is recommended that effective measures be taken to alleviate stigma by improving children and adolescents' self-efficacy and providing more social support for them and their families.

12.
Nat Geosci ; 17(7): 683-688, 2024.
Article in English | MEDLINE | ID: mdl-39006245

ABSTRACT

The geodynamic evolution of the Tibetan Plateau remains highly debated. Any model of its evolution must explain the plateau's growth as constrained by palaeo-altitude studies, the spatio-temporal distribution of magmatic activity, and the lithospheric mantle removal inferred from seismic velocity anomalies in the underlying mantle. Several conflicting models have been proposed, but none of these explains the first-order topographic, magmatic and seismic features self-consistently. Here we propose and test numerically an evolutionary model of the plateau that involves gradual peeling of the lithospheric mantle from the overriding plate and consequent mantle and crustal melting and uplift. We show that this model successfully reproduces the successive surface uplift of the plateau to more than 4 km above sea level and is consistent with the observed migration of magmatism and geometry of the lithosphere-asthenosphere boundary resulting from subduction of the Indian plate and delamination of the mantle lithosphere of the Eurasian plate. These comparisons indicate that mantle delamination from the overriding plate is the driving force behind the uplift of the Tibetan Plateau and, potentially, orogenic plateaus more generally.

13.
Front Nutr ; 11: 1334974, 2024.
Article in English | MEDLINE | ID: mdl-38957867

ABSTRACT

Background: Though considerable studies suggesting connections between micronutrients and pregnancy complications, current evidence remains inconsistent and lacks causative confirmation. Our study aimed to explore the causal links between them with a two-sample Mendelian randomization (MR) analysis. Methods: Genome-wide association studies (GWAS) data for circulating micronutrients were sourced from GWAS Catalog consortium and PubMed, while data for pregnancy outcomes, including gestational diabetes mellitus (GDM), gestational hypertension (GH), spontaneous abortion (SA), preterm birth (PTB), and stillbirth (SB), were retrieved from the UK Biobank and FinnGen consortia. Causal effects were appraised using inverse variance weighted (IVW), weighted median (WM), and MR-Egger, followed by sensitivity analyses and meta-analysis for validation. Results: Genetically predicted higher vitamin E (OR = 0.993, 95% CI 0.987-0.998; p = 0.005) levels were inversely associated with SA risk. Consistent results were obtained in meta-analysis (OR = 0.99, 95% CI 0.99-1.00; p = 0.005). Besides, a potential positive causality between genetic predisposition to vitamin B12 and SB was identified in both IVW (OR = 0.974, 95% CI 0.953-0.996; p = 0.018) and WM analysis (OR = 0.965, 95% CI 0.939-0.993; p = 0.013). However, no causal relationships were observed between other analyzed circulating micronutrients and pregnancy complications. Conclusion: This study offers compelling evidence of causal associations between circulating levels of vitamins E, B12 and the risk of SA and SB, respectively. These findings are pivotal for pregnancy complications screening and prevention, potentially guiding clinical practice and public health policies toward targeted nutritional interventions.

14.
J Acoust Soc Am ; 156(1): 244-255, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38980097

ABSTRACT

Underwater acoustic target recognition has emerged as a prominent research area within the field of underwater acoustics. However, the current availability of authentic underwater acoustic signal recordings remains limited, which hinders data-driven acoustic recognition models from learning robust patterns of targets from a limited set of intricate underwater signals, thereby compromising their stability in practical applications. To overcome these limitations, this study proposes a recognition framework called M3 (multitask, multi-gate, multi-expert) to enhance the model's ability to capture robust patterns by making it aware of the inherent properties of targets. In this framework, an auxiliary task that focuses on target properties, such as estimating target size, is designed. The auxiliary task then shares parameters with the recognition task to realize multitask learning. This paradigm allows the model to concentrate on shared information across tasks and identify robust patterns of targets in a regularized manner, thus, enhancing the model's generalization ability. Moreover, M3 incorporates multi-expert and multi-gate mechanisms, allowing for the allocation of distinct parameter spaces to various underwater signals. This enables the model to process intricate signal patterns in a fine-grained and differentiated manner. To evaluate the effectiveness of M3, extensive experiments were implemented on the ShipsEar underwater ship-radiated noise dataset. The results substantiate that M3 has the ability to outperform the most advanced single-task recognition models, thereby achieving the state-of-the-art performance.

15.
Research (Wash D C) ; 7: 0397, 2024.
Article in English | MEDLINE | ID: mdl-38952997

ABSTRACT

Hyperthermia therapy is considered an effective anticancer strategy. However, high temperature can trigger an excessive inflammatory response, leading to tumor self-protection, immunosuppression, metastasis, and recurrence. To address this issue, we reported a multifunctional photothermal nanoplatform to achieve mild hyperthermia photothermal therapy (mild PTT) based on cisplatin (DDP) and a ferrocene metal-organic framework (MOF-Fc) nanocomposite, which can specifically enhance ferroptosis-triggered oxidative stress levels and synchronously amplify mild hyperthermia PTT-mediated anticancer responses. Both in vitro and in vivo antineoplastic results verify the superiority of mild PTT with DDP/MOF-Fc@HA. The combination of DDP and MOF-Fc exhibits Fenton catalytic activity and glutathione depletion capacity, magnifying mild hyperthermia effects via the radical oxygen species (ROS)-adenosine triphosphate (ATP)-HSP silencing pathway, with important implications for clinical hyperthermia therapy.

16.
J Acoust Soc Am ; 156(1): 299-313, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38984811

ABSTRACT

Underwater acoustic target recognition based on passive sonar faces numerous challenges in practical maritime applications. One of the main challenges lies in the susceptibility of signal characteristics to diverse environmental conditions and data acquisition configurations, which can lead to instability in recognition systems. While significant efforts have been dedicated to addressing these influential factors in other domains of underwater acoustics, they are often neglected in the field of underwater acoustic target recognition. To overcome this limitation, this study designs auxiliary tasks that model influential factors (e.g., source range, water column depth, or wind speed) based on available annotations and adopts a multi-task framework to connect these factors to the recognition task. Furthermore, we integrate an adversarial learning mechanism into the multi-task framework to prompt the model to extract representations that are robust against influential factors. Through extensive experiments and analyses on the ShipsEar dataset, our proposed adversarial multi-task model demonstrates its capacity to effectively model the influential factors and achieve state-of-the-art performance on the 12-class recognition task.

17.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38979142

ABSTRACT

Vault is a massive ribonucleoprotein complex found across Eukaryota. The major vault protein (MVP) oligomerizes into an ovular cage, which contains several minor vault components (MVCs) and is thought to transport transiently bound "cargo" molecules. Vertebrate vaults house a poly (ADP-ribose) polymerase (known as PARP4 in humans), which is the only MVC with known enzymatic activity. Despite being discovered decades ago, the molecular basis for PARP4's interaction with MVP remains unclear. In this study, we determined the structure of the human vault cage in complex with PARP4 and its enzymatic substrate NAD + . The structures reveal atomic-level details of the protein-binding interface, as well as unexpected NAD + -binding pockets within the interior of the vault cage. In addition, proteomics data show that human vaults purified from wild-type and PARP4-depleted cells interact with distinct subsets of proteins. Our results thereby support a model in which PARP4's specific incorporation into the vault cage helps to regulate vault's selection of cargo and its subcellular localization. Further, PARP4's proximity to MVP's NAD + -binding sites could support its enzymatic function within the vault.

18.
Asian J Androl ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953713

ABSTRACT

ABSTRACT: Platelet-rich plasma (PRP) shows promise as a regenerative modality for mild-to-moderate erectile dysfunction (ED). However, its efficacy in treating severe ED remains unknown. Blood samples from 8-week-old male rats were used to prepare PRP through a two-step centrifugation procedure, followed by chitosan activation and freeze‒thaw cycle. A hyperhomocysteinemia (HHcy)-related ED model was established using a methionine-enriched diet, and an apomorphine (APO) test was conducted during the 4 th week. APO-negative rats were divided into two groups and were injected with PRP or saline every 2 weeks. Erectile function and histological analyses of the corpus cavernosum were performed during the 16 th week. The results revealed that erectile function was significantly impaired in rats with HHcy-related ED compared to that in age-matched rats but was improved by repeated PRP injections. Immunofluorescence staining revealed a reduction in reactive oxygen species and additional benefits on the recovery of structures within the corpus cavernosum in rats that received PRP treatment compared to those in the saline-injected control group. Therefore, PRP could enhance functional and structural recovery in a severe HHcy-related ED model. A notable strength of the present study lies in the use of a repeated intracavernous injection method, mirroring protocols used in human studies, which offers more reliable results for translating the findings to humans.

19.
Nat Commun ; 15(1): 6426, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080355

ABSTRACT

Different from traditional organic luminescent materials based on covalent delocalization, clusteroluminescence from nonconjugated luminogens relies on noncovalent through-space conjugation of electrons. However, such spatial electron delocalization is usually weak, resulting in low luminescent efficiency and board emission peak due to multiple vibrational energy levels. Herein, several nonconjugated luminogens are constructed by employing biphenyl as the building unit to reveal the structure-property relationship and solve current challenges. The intramolecular through-space conjugation can be gradually strengthened by introducing building units and stabilized by rigid molecular skeleton and multiple intermolecular interactions. Surprisingly, narrowband clusteroluminescence with full width at half-maximum of 40 nm and 100% efficiency is successfully achieved via an asymmetric conformation, exhibiting comparable performance to the traditional conjugated luminogens. This work realizes highly efficient and narrowband clusteroluminescence from nonconjugated luminogens and highlights the essential role of structural conformation in manipulating the photophysical properties of unconventional luminescent materials.

20.
Org Biomol Chem ; 22(30): 6189-6197, 2024 07 31.
Article in English | MEDLINE | ID: mdl-39027944

ABSTRACT

A series of chromone-deferiprone hybrids were designed, synthesized, and evaluated as inhibitors of human monoamine oxidase B (hMAO-B) with iron-chelating activity for the treatment of Alzheimer's disease (AD). The majority exhibited moderate inhibitory activity towards hMAO-B and potent iron-chelating properties. Particularly, compound 25c demonstrated remarkable selectivity against hMAO-B with an IC50 value of 1.58 µM and potent iron-chelating ability (pFe3+ = 18.79) comparable to that of deferiprone (pFe3+ = 17.90). Molecular modeling and kinetic studies showed that 25c functions as a non-competitive hMAO-B inhibitor. According to the predicted results, compound 25c can penetrate the blood-brain barrier (BBB). Additionally, it has been proved to display significant antioxidant activity and the ability to inhibit neuronal ferroptosis. More importantly, compound 25c reduced the cognitive impairment induced by scopolamine and showed significant non-toxicity in short-term toxicity assays. In summary, compound 25c was identified as a potential anti-AD agent with hMAO-B inhibitory, iron-chelating and anti-ferroptosis activities.


Subject(s)
Alzheimer Disease , Chromones , Deferiprone , Iron Chelating Agents , Monoamine Oxidase Inhibitors , Monoamine Oxidase , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/chemical synthesis , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Iron Chelating Agents/pharmacology , Iron Chelating Agents/chemistry , Iron Chelating Agents/chemical synthesis , Deferiprone/pharmacology , Deferiprone/chemistry , Monoamine Oxidase/metabolism , Humans , Chromones/chemistry , Chromones/pharmacology , Chromones/chemical synthesis , Structure-Activity Relationship , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Ferroptosis/drug effects , Molecular Structure , Molecular Docking Simulation , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Dose-Response Relationship, Drug
SELECTION OF CITATIONS
SEARCH DETAIL