Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Acta Pharmacol Sin ; 43(12): 3130-3138, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35296780

ABSTRACT

VV116 (JT001) is an oral drug candidate of nucleoside analog against SARS-CoV-2. The purpose of the three phase I studies was to evaluate the safety, tolerability, and pharmacokinetics of single and multiple ascending oral doses of VV116 in healthy subjects, as well as the effect of food on the pharmacokinetics and safety of VV116. Three studies were launched sequentially: Study 1 (single ascending-dose study, SAD), Study 2 (multiple ascending-dose study, MAD), and Study 3 (food-effect study, FE). A total of 86 healthy subjects were enrolled in the studies. VV116 tablets or placebo were administered per protocol requirements. Blood samples were collected at the scheduled time points for pharmacokinetic analysis. 116-N1, the metabolite of VV116, was detected in plasma and calculated for the PK parameters. In SAD, AUC and Cmax increased in an approximately dose-proportional manner in the dose range of 25-800 mg. T1/2 was within 4.80-6.95 h. In MAD, the accumulation ratio for Cmax and AUC indicated a slight accumulation upon repeated dosing of VV116. In FE, the standard meal had no effect on Cmax and AUC of VV116. No serious adverse event occurred in the studies, and no subject withdrew from the studies due to adverse events. Thus, VV116 exhibited satisfactory safety and tolerability in healthy subjects, which supports the continued investigation of VV116 in patients with COVID-19.


Subject(s)
COVID-19 , Nucleosides , Humans , SARS-CoV-2 , Healthy Volunteers , Double-Blind Method , Area Under Curve , China , Administration, Oral , Dose-Response Relationship, Drug
2.
Acta Pharmacol Sin ; 42(7): 1195-1200, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33041326

ABSTRACT

Remdesivir (RDV) exerts anti-severe acute respiratory coronavirus 2 activity following metabolic activation in the target tissues. However, the pharmacokinetics and tissue distributions of the parent drug and its active metabolites have been poorly characterized to date. Blood and tissue levels were evaluated in the current study. After intravenous administration of 20 mg/kg RDV in mice, the concentrations of the parent drug, nucleotide monophosphate (RMP) and triphosphate (RTP), as well as nucleoside (RN), in the blood, heart, liver, lung, kidney, testis, and small intestine were quantified. In blood, RDV was rapidly and completely metabolized and was barely detected at 0.5 h, similar to RTP, while its metabolites RMP and RN exhibited higher blood levels with increased residence times. The area under the concentration versus time curve up to the last measured point in time (AUC0-t) values of RMP and RN were 4558 and 136,572 h∙nM, respectively. The maximum plasma concentration (Cmax) values of RMP and RN were 2896 nM and 35,819 nM, respectively. Moreover, RDV presented an extensive distribution, and the lung, liver and kidney showed high levels of the parent drug and metabolites. The metabolic stabilities of RDV and RMP were also evaluated using lung, liver, and kidney microsomes. RDV showed higher clearances in the liver and kidney than in the lung, with intrinsic clearance (CLint) values of 1740, 1253, and 127 mL/(min∙g microsomal protein), respectively.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Nucleosides/metabolism , Nucleotides/metabolism , Polyphosphates/metabolism , Tissue Distribution/physiology , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/pharmacology , Alanine/pharmacokinetics , Alanine/pharmacology , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , COVID-19/metabolism , Kidney/metabolism , Liver/metabolism , Lung/metabolism , Male , Mice , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
3.
Science ; 368(6498): 1499-1504, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32358203

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global crisis. Replication of SARS-CoV-2 requires the viral RNA-dependent RNA polymerase (RdRp) enzyme, a target of the antiviral drug remdesivir. Here we report the cryo-electron microscopy structure of the SARS-CoV-2 RdRp, both in the apo form at 2.8-angstrom resolution and in complex with a 50-base template-primer RNA and remdesivir at 2.5-angstrom resolution. The complex structure reveals that the partial double-stranded RNA template is inserted into the central channel of the RdRp, where remdesivir is covalently incorporated into the primer strand at the first replicated base pair, and terminates chain elongation. Our structures provide insights into the mechanism of viral RNA replication and a rational template for drug design to combat the viral infection.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/chemistry , Betacoronavirus/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Alanine/chemistry , Alanine/metabolism , Alanine/pharmacology , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/physiology , Catalytic Domain , Coronavirus RNA-Dependent RNA Polymerase , Cryoelectron Microscopy , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Models, Molecular , Multiprotein Complexes/chemistry , Protein Conformation , RNA, Viral/chemistry , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism , Virus Replication
4.
Yao Xue Xue Bao ; 47(4): 498-501, 2012 Apr.
Article in Chinese | MEDLINE | ID: mdl-22799033

ABSTRACT

The study aims to identify the degradation products of levofloxacin by HPLC-MS. The degradation products of levofloxacin were chromatographed on Agilent Zorbax Extend-C18 column (250 mm x 4.6 mm, 5 microm). The mobile phase was 0.1% ammonium acetate solution (using methanoic acid to adjust to pH 3.5)-acetonitrile at the flow rate of 0.5 mL x min(-1) (gradient elution), the column temperature was 40 degrees C. Descarboxyl levofloxacin, desmethyl levofloxacin and levofloxacin N-oxide were identified through comparing with the standard spectrum and the results of mass spectrometry, i.e. m/z 318.2 was descarboxyl levofloxacin, m/z 348.2 was desmethyl levofloxacin, m/z 378.1 was levofloxacin-N-oxide. This method is simple, fast, accurate and suitable for the identification of degradation products of levofloxacin.


Subject(s)
Drug Stability , Levofloxacin , Ofloxacin/analysis , Ofloxacin/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Photolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...