Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; 22(11): e14003, 2023 11.
Article in English | MEDLINE | ID: mdl-37828862

ABSTRACT

The lifespan of schizophrenia patients is significantly shorter than the general population. Olanzapine is one of the most commonly used antipsychotic drugs (APDs) for treating patients with psychosis, including schizophrenia and bipolar disorder. Despite their effectiveness in treating positive and negative symptoms, prolonged exposure to APDs may lead to accelerated aging and cognitive decline, among other side effects. Here we report that dysfunctional mitophagy is a fundamental mechanism underlying accelerated aging induced by olanzapine, using in vitro and in vivo (Caenorhabditis elegans) models. We showed that the aberrant mitophagy caused by olanzapine was via blocking mitophagosome-lysosome fusion. Furthermore, olanzapine can induce mitochondrial damage and hyperfragmentation of the mitochondrial network. The mitophagosome-lysosome fusion in olanzapine-induced aging models can be restored by a mitophagy inducer, urolithin A, which alleviates defective mitophagy, mitochondrial damage, and fragmentation of the mitochondrial network. Moreover, the mitophagy inducer ameliorated behavioral changes induced by olanzapine, including shortened lifespan, and impaired health span, learning, and memory. These data indicate that olanzapine impairs mitophagy, leading to the shortened lifespan, impaired health span, and cognitive deficits. Furthermore, this study suggests the potential application of mitophagy inducers as therapeutic strategies to reverse APD-induced adverse effects associated with accelerated aging.


Subject(s)
Antipsychotic Agents , Animals , Humans , Olanzapine/pharmacology , Antipsychotic Agents/adverse effects , Aging , Mitophagy , Mitochondria , Caenorhabditis elegans
2.
J Clin Invest ; 133(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36787221

ABSTRACT

Obesity is a risk factor for neurodegenerative disease associated with cognitive dysfunction, including Alzheimer's disease. Low-grade inflammation is common in obesity, but the mechanism between inflammation and cognitive impairment in obesity is unclear. Accumulative evidence shows that quinolinic acid (QA), a neuroinflammatory neurotoxin, is involved in the pathogenesis of neurodegenerative processes. We investigated the role of QA in obesity-induced cognitive impairment and the beneficial effect of butyrate in counteracting impairments of cognition, neural morphology, and signaling. We show that in human obesity, there was a negative relationship between serum QA levels and cognitive function and decreased cortical gray matter. Diet-induced obese mice had increased QA levels in the cortex associated with cognitive impairment. At single-cell resolution, we confirmed that QA impaired neurons, altered the dendritic spine's intracellular signal, and reduced brain-derived neurotrophic factor (BDNF) levels. Using Caenorhabditis elegans models, QA induced dopaminergic and glutamatergic neuron lesions. Importantly, the gut microbiota metabolite butyrate was able to counteract those alterations, including cognitive impairment, neuronal spine loss, and BDNF reduction in both in vivo and in vitro studies. Finally, we show that butyrate prevented QA-induced BDNF reductions by epigenetic enhancement of H3K18ac at BDNF promoters. These findings suggest that increased QA is associated with cognitive decline in obesity and that butyrate alleviates neurodegeneration.


Subject(s)
Cognitive Dysfunction , Neurodegenerative Diseases , Mice , Animals , Humans , Quinolinic Acid/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Butyrates , Obesity/drug therapy , Obesity/genetics , Obesity/complications , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Inflammation/complications
3.
Geroscience ; 44(3): 1505-1524, 2022 06.
Article in English | MEDLINE | ID: mdl-35445360

ABSTRACT

Autophagy is a catabolic process to eliminate defective cellular molecules via lysosome-mediated degradation. Dysfunctional autophagy is associated with accelerated aging, whereas stimulation of autophagy could have potent anti-aging effects. We report that cannabidiol (CBD), a natural compound from Cannabis sativa, extends lifespan and rescues age-associated physiological declines in C. elegans. CBD promoted autophagic flux in nerve-ring neurons visualized by a tandem-tagged LGG-1 reporter during aging in C. elegans. Similarly, CBD activated autophagic flux in hippocampal and SH-SY5Y neurons. Furthermore, CBD-mediated lifespan extension was dependent on autophagy genes (bec-1, vps-34, and sqst-1) confirmed by RNAi knockdown experiments. C. elegans neurons have previously been shown to accumulate aberrant morphologies, such as beading and blebbing, with increasing age. Interestingly, CBD treatment slowed the development of these features in anterior and posterior touch receptor neurons (TRN) during aging. RNAi knockdown experiments indicated that CBD-mediated age-associated morphological changes in TRNs require bec-1 and sqst-1, not vps-34. Further investigation demonstrated that CBD-induced lifespan extension and increased neuronal health require sir-2.1/SIRT1. These findings collectively indicate the anti-aging benefits of CBD treatment, in both in vitro and in vivo models, and its potential to improve neuronal health and longevity.


Subject(s)
Cannabidiol , Neuroblastoma , Animals , Autophagy/physiology , Caenorhabditis elegans/genetics , Cannabidiol/pharmacology , Humans , Longevity/physiology , Neurons , Sirtuin 1
4.
FASEB J ; 35(5): e21537, 2021 05.
Article in English | MEDLINE | ID: mdl-33817834

ABSTRACT

Cannabidiol (CBD), a phytocannabinoid from the Cannabis sativa plant, exhibits a broad spectrum of potential therapeutic properties for neurodegenerative diseases. An accumulation of amyloid-ß (Aß) protein is one of the most important neuropathology in neurodegenerative diseases like Alzheimer's disease (AD). Data on the effect of CBD on the amelioration of Aß-induced neurite degeneration and its consequences of life and health spans is sparse. This study aimed to investigate the effects of CBD on neurite outgrowth in cells and lifespan and health span in Caenorhabditis elegans (C. elegans). In human SH-SY5Y neuronal cells, CBD prevented neurite lesion induced by Aß1-42 and increased the expression of fatty acid amide hydrolase (FAAH) and cannabinoid receptor 1 (CB1R). Furthermore, CBD both protected the reduction of dendritic spine density and rescued the activity of synaptic Ca2+ /calmodulin-dependent protein kinase II (CaMKII) from Aß1-42 toxicity in primary hippocampal neurons. In C. elegans, we used the transgenic CL2355 strain of C. elegans, which expresses the human Aß peptide throughout the nervous system and found that CBD treatment extended lifespan and improved health span. The neuroprotective effect of CBD was further explored by observing the dopaminergic neurons using transgenic dat-1: GFP strains using the confocal microscope. This study shows that CBD prevents the neurite degeneration induced by Aß, by a mechanism involving CB1R activation, and extends lifespan and improves health span in Aß-overexpressing worms. Our findings support the potential therapeutic approach of CBD for the treatment of AD patients.


Subject(s)
Amyloid beta-Peptides/toxicity , Caenorhabditis elegans/growth & development , Cannabidiol/pharmacology , Longevity , Neuroblastoma/drug therapy , Neuronal Outgrowth , Receptor, Cannabinoid, CB1/metabolism , STAT3 Transcription Factor/metabolism , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/growth & development , Anticonvulsants/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Disease Models, Animal , Mice , Mice, Inbred C57BL , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neurons/cytology , Neurons/metabolism , Neuroprotective Agents , Phosphorylation , Receptor, Cannabinoid, CB1/genetics , STAT3 Transcription Factor/genetics
5.
Article in English | MEDLINE | ID: mdl-30597182

ABSTRACT

Dopamine D2 receptor (D2R) hyperactivity causes altered brain development and later produces onset of symptoms mimicking schizophrenia. It is known that D2R interacts with disrupted in schizophrenia 1 (DISC1); however, the effect of D2R-DISC1 interaction in intracellular signalling and neurite growth has not been studied. This study investigated the effect of D2R over-activation on Akt-GSK3ß signalling and neurite morphology in cortical neurons. Over-activation of D2Rs caused neurite lesions, which were associated with decreased protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK3ß) phosphorylation in cortical neurons. The antipsychotic drug aripiprazole was more effective in the prevention of neurite lesions than haloperidol. Unlike haloperidol, aripiprazole prevented downregulation of phospho (p) Akt-pGSK3ß induced by D2R hyperactivity, indicating involvement of different pathways. D2Rs were hyperactive in cortical neurons of mice with DISC1 mutation, which caused more severe neurite lesions in cortical neurons treated with quinpirole. Immunofluorescent staining for Ca2+/calmodulin-dependent protein kinase II (CaMKII) confirmed that cortical pyramidal neurons were involved in the D2R hyperactivity-induced neurite lesions. Using the fluorescence resonance energy transfer (FRET) technique, we provide direct evidence that D2R hyperactivity led to D2R-DISC1 complex formation, which altered pGSK3ß signalling. This study showed that D2R hyperactivity-induced D2R-DISC1 complex formation is associated with decreased pAkt-pGSK3ß signalling and in turn, caused neurite impairment. Aripiprazole and haloperidol prevented the impairment of neurite growth but appeared to do so via different intracellular signalling pathways.


Subject(s)
Aripiprazole/pharmacology , Haloperidol/pharmacology , Nerve Tissue Proteins/metabolism , Neurites/drug effects , Neuroprotective Agents/pharmacology , Receptors, Dopamine D2/metabolism , Animals , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , HEK293 Cells , Humans , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/genetics , Neurites/metabolism , Neuronal Outgrowth/drug effects , Neuronal Outgrowth/physiology , Neuroprotection/drug effects , Neuroprotection/physiology , Receptors, Dopamine D2/agonists , Receptors, Dopamine D2/genetics
6.
Front Neurosci ; 12: 743, 2018.
Article in English | MEDLINE | ID: mdl-30374288

ABSTRACT

Haloperidol is a commonly used antipsychotic drug for treating schizophrenia. Clinical imaging studies have found that haloperidol can cause volume loss of human brain tissue, which is supported by animal studies showing that haloperidol reduces the number of synaptic spines. The mechanism remains unknown. Gut microbiota metabolites, short chain fatty acids including propionate, are reported to have neuroprotective effect and influence gene expression. This study aims to investigate the effect and mechanism of propionate in the protection of neurite lesion induced by haloperidol. This study showed that 10 µM haloperidol (clinical relevant dose) impaired neurite length in human blastoma SH-SY5Y cells, which were confirmed by using primary mouse striatal spiny neurons. We found that haloperidol impaired neurite length were accompanied by a decreased neuropeptide Y (NPY) expression, but no effect on GSK3ß signaling. Importantly, this project research found that propionate was capable of protecting against haloperidol-induced neurite lesions and preventing NPY reduction. To confirm this finding, we used specific siRNAs targeting NPY which blocked the protective effect of propionate on haloperidol-induced neurite lesions. Furthermore, since NPY is regulated by the nuclear transcription factor CREB, we measured pCREB that was decreased by haloperidol and was normalized by propionate. Therefore, propionate has a protective effect against pCREB-NPY mediated haloperidol-induced neurite lesions.

SELECTION OF CITATIONS
SEARCH DETAIL
...