Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters











Publication year range
1.
Eur J Pharmacol ; 983: 176901, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39181225

ABSTRACT

Constant efforts have been made to move towards maintaining the positive anti-inflammatory functions of glucocorticoids (GCs) while minimizing side effects. The anti-inflammatory effect of GCs is mainly attributed to the inhibition of major inflammatory pathways such as NF-κB through GR transrepression, while its side effects are mainly mediated by transactivation. Here, we investigated the selective glucocorticoid receptor modulator (SGRM)-like properties of a plant-derived compound. In this study, glucocorticoid receptor (GR)-mediated alleviation of inflammation by SP-8 was investigated by a combination of in vitro, in silico, and in vivo approaches. Molecular docking and cellular thermal shift assay suggested that SP-8 bound stably to the active site of GR via hydrogen bonding and hydrophobic interactions. SP-8 activated GR, induced GR nuclear translocation, and inhibited NF-κB pathway activation. Furthermore, SP-8 did not up-regulate the gene and protein expression of PEPCK and TAT in HepG2 cells, and it did not induce fat deposition like GC and has little effect on bone metabolism. Interestingly, SP-8 upregulated GR protein expression and did not cause GR phosphorylation at Ser211 in RAW264.7 cells. This work proved that SP-8 dissociated characteristics of transrepression and transactivation can be separated. In addition, the in vitro and in vivo anti-inflammatory effects of SP-8 were confirmed in LPS-induced RAW 264.7 cells and in a mouse model of DSS-induced ulcerative colitis, respectively. In conclusion, SP-8 might serve as a potential SGRM and might hold great potential for therapeutic use in inflammatory diseases.

2.
Eur J Pain ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982797

ABSTRACT

BACKGROUND: The current analgesics often prevent patients from getting effective treatment due to their adverse effects. Cannabidiol (CBD) is well tolerated, has few side effects and has been extensively investigated in analgesia. However, its oral bioavailability is extremely low. In order to solve this problem, we developed the cannabidiol nanocrystals (CBD-NC) in the earlier stage. METHODS: In this study, we evaluated the nociceptive behaviours associated with neuropathic pain (NP) induced by the spared nerve injury (SNI) model. Assessment of pain threshold was evaluated by paw withdraw threshold (PWT) and paw withdrawal latency (PWL). The improving effect on the motor dysfunction was determined by rota-rod testing. To assess the neuroprotective effect, nerve demyelination and expression of peripheral myelin protein PMP22 were measured with myelin sheath staining and western blotting. Protein expressions in microglia of spinal cord were tested by western blot to explore the underlying mechanism. RESULTS: Compared with the CBD oil solution, CBD-NC significantly reduced mechanical allodynia and thermal hyperalgesia in rats. CBD-NC could improve motor dysfunction induced by SNI in rats, significantly reverse the demyelination and increase the expression of the marker protein of peripheral myelin. Underlying spinal analgesic mechanism of microglia and related factors were preliminarily confirmed. CONCLUSIONS: CBD-NC administration is an effective treatment for NP associated with SNI, and the analgesic effect of CBD-NC was significantly better than that of CBD oil sol. By contrast, CBD-NC has a fast-acting and long-term effect in the treatment of NP. Our study further supports the potential therapeutic effect of CBD-NC on NP. SIGNIFICANCE: The absolute bioavailability of the CBD-NC intramuscular injection formulation can reach 203.31%, which can solve the problem of low oral bioavailability. This research evaluated the therapeutic effect of CBD-NC on NP associated with the SNI model for the first time. All available date showed that whatever the analgesic or neuroprotective effect of CBD-NC, it was significantly better than that of CBD oil sol., which was consistent with the results of the pharmacokinetic. This research supports the initiation of more trials testing the efficacy of CBD-NC for treating NP.

3.
Nat Prod Res ; : 1-6, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38251834

ABSTRACT

Two new protopanaxadiol type sapogenins, (3ß,12ß)-3,12,20-trihydroxydammar-24-en-26-al (1) and (3ß,12ß)-3,12,20-trihydroxydammar-24-en-26-oic acid (2), were isolated from the alkali hydrolysate of stems-leaves of Panax notoginseng, along with seven known analogues (3-9). Their structures were elucidated by spectroscopic analyses and single-crystal X-ray diffraction. Compound 2 and the known sapogenins 5-8 displayed weak to moderate inhibition of NO production in LPS-induced RAW264.7 macrophages with IC50 values from 44.5 to 143.6 µM, respectively.

4.
bioRxiv ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-38106227

ABSTRACT

High-resolution awake mouse fMRI remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radiofrequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion induced artifacts. Using a 14T scanner, high-resolution fMRI enabled brain-wide functional mapping of visual and vibrissa stimulation at 100x100x200µm resolution with a 2s per frame sampling rate. Besides activated ascending visual and vibrissa pathways, robust BOLD responses were detected in the anterior cingulate cortex upon visual stimulation and spread through the ventral retrosplenial area (VRA) with vibrissa air-puff stimulation, demonstrating higher-order sensory processing in association cortices of awake mice. In particular, the rapid hemodynamic responses in VRA upon vibrissa stimulation showed a strong correlation with the hippocampus, thalamus, and prefrontal cortical areas. Cross-correlation analysis with designated VRA responses revealed early positive BOLD signals at the contralateral barrel cortex (BC) occurring 2 seconds prior to the air-puff in awake mice with repetitive stimulation, which was not detected using a randomized stimulation paradigm. This early BC activation indicated a learned anticipation through the vibrissa system and association cortices in awake mice under continuous training of repetitive air-puff stimulation. This work establishes a high-resolution awake mouse fMRI platform, enabling brain-wide functional mapping of sensory signal processing in higher association cortical areas.

5.
J Neuroinflammation ; 20(1): 212, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735410

ABSTRACT

Neuronal iron overload contributes to synaptic damage and neuropsychiatric disorders. However, the molecular mechanisms underlying iron deposition in depression remain largely unexplored. Our study aims to investigate how nuclear factor-erythroid 2 (NF-E2)-related factor 2 (Nrf2) ameliorates hippocampal synaptic dysfunction and reduces brain functional connectivity (FC) associated with excessive iron in depression. We treated mice with chronic unpredictable mild stress (CUMS) with the iron chelator deferoxamine mesylate (DFOM) and a high-iron diet (2.5% carbonyl iron) to examine the role of iron overload in synaptic plasticity. The involvement of Nrf2 in iron metabolism and brain function was assessed using molecular biological techniques and in vivo resting-state functional magnetic resonance imaging (rs-fMRI) through genetic deletion or pharmacologic activation of Nrf2. The results demonstrated a significant correlation between elevated serum iron levels and impaired hippocampal functional connectivity (FC), which contributed to the development of depression-induced CUMS. Iron overload plays a crucial role in CUMS-induced depression and synaptic dysfunction, as evidenced by the therapeutic effects of a high-iron diet and DFOM. The observed iron overload in this study was associated with decreased Nrf2 levels and increased expression of transferrin receptors (TfR). Notably, inhibition of iron accumulation effectively attenuated CUMS-induced synaptic damage mediated by downregulation of brain-derived neurotrophic factor (BDNF). Nrf2-/- mice exhibited compromised FC within the limbic system and the basal ganglia, particularly in the hippocampus, and inhibition of iron accumulation effectively attenuated CUMS-induced synaptic damage mediated by downregulation of brain-derived neurotrophic factor (BDNF). Activation of Nrf2 restored iron homeostasis and reversed vulnerability to depression. Mechanistically, we further identified that Nrf2 deletion promoted iron overload via upregulation of TfR and downregulation of ferritin light chain (FtL), leading to BDNF-mediated synapse damage in the hippocampus. Therefore, our findings unveil a novel role for Nrf2 in regulating iron homeostasis while providing mechanistic insights into poststress susceptibility to depression. Targeting Nrf2-mediated iron metabolism may offer promising strategies for developing more effective antidepressant therapies.


Subject(s)
Iron Overload , Iron , Animals , Mice , Brain-Derived Neurotrophic Factor , NF-E2-Related Factor 2 , Depression/etiology , Hippocampus
6.
J Med Chem ; 66(11): 7615-7628, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37246902

ABSTRACT

Ultraviolet (UV), as the most common environmental stress factor to human skin, causes redox imbalance and leads to photoaging and the development of cancer. In this work, we screened a nonapeptide (PWH) with good activities of antioxidant, promoting the secretion of type 1 collagen (COL-1) and repairing damaged skin from a series of rationally designed novel short peptides. PWH could alleviate UV-A-induced oxidative stress, restrain pro-inflammatory cytokine production, protect mitochondrial function, and maintain autophagy activity. We also first indicated that inhibiting the PI3K/AKT/mTOR signaling pathway and restoration of autophagy activity might delay the photoaging process in skin cells. Topical applications of PWH were further demonstrated to exhibit significant protection in full-wavelength UV-induced skin aging in mice models both in the prophylaxis and treatment way. In addition, given the good stability and without unwanted toxicity and anaphylaxis, PWH could be a promising candidate for cosmetics and pharmaceuticals.


Subject(s)
Collagen Type I , Skin Aging , Animals , Humans , Mice , Collagen Type I/metabolism , Collagen Type I/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Skin/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , Ultraviolet Rays/adverse effects
7.
Phytomedicine ; 114: 154762, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36965372

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurogenerative disease and remains no effective method for stopping its progress. Ferroptosis and adaptive immunity have been proven to contribute to AD pathogenesis. Salidroside exhibits neuroprotective and immunomodulatory effects. However, the underlying mechanisms linking salidroside, ferroptosis, and adaptive immunity in AD remain uncertain. PURPOSE: The objective of this study is to explore the neuroprotective effects and the potential molecular mechanisms of salidroside against neuronal ferroptosis and CD8+ T cell infiltration in senescence-accelerated mouse prone 8 (SAMP8) mice. STUDY DESIGN AND METHODS: SAMP8 mice were employed as an AD model and were treated with salidroside for 12 weeks. Behavioral tests, immunohistochemistry, HE and Nissl staining, immunofluorescence, transmission electron microscopy, quantitative proteomics, bioinformatic analysis, flow cytometry, iron staining, western blotting, and molecular docking were performed. RESULTS: Treatment with salidroside dose-dependently attenuated cognitive impairment, reduced the accumulation of Aß plaques and restored neuronal damage. Salidroside also suppressed the infiltration of CD8+T cells, oxidative stress, and inflammatory cytokines, and improved mitochondrial metabolism, iron metabolism, lipid metabolism, and redox in the SAMP8 mice brain. The administration of salidroside decreased iron deposition, reduced TFR1, and ACSL4 protein expression, upregulated SLC7A11, and GPX4 protein expression, and promoted the Nrf2/GPX4 axis activation. CONCLUSION: In conclusion, neuronal ferroptosis and CD8+T cells are involved in the process of cognitive impairment in SAMP8 mice. Salidroside alleviates cognitive impairment and inhibits neuronal ferroptosis. The underlying mechanisms may involve the Nrf2/GPX4 axis activation and reduction in CD8+T cells infiltration. This study provides some evidence for the roles of salidroside in adaptive immunity and neuronal ferroptosis in SAMP8 mice.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Ferroptosis , Animals , Mice , Alzheimer Disease/metabolism , Cognitive Dysfunction/metabolism , Iron , Molecular Docking Simulation , NF-E2-Related Factor 2/metabolism
8.
Org Biomol Chem ; 21(8): 1737-1743, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36723156

ABSTRACT

Three novel actinomycins, actimomycin S (1), neo-actinomycins C and D (2 and 3), and one new benzo[d]oxazole alkaloid (4) were isolated from the Streptomyces sp. strain S22, along with three known congeners F9 (5), X2 (6) and X0ß (7) and 2-acetylamino-3-hydroxyl-4-methyl-benzoic acid methyl ester (8). The structures of the new products were elucidated by spectroscopic methods, and the absolute configuration of amino acid residues was determined by Marfey's analysis. Actinomycin S contains an aspartic acid (Asp) residue in the ß-peptidolactone ring. This is the first report of an Asp residue within an actinomycin-type natural product. Notably, neo-actinomycins C and D feature a rare tetracyclic 5H-oxazolo[4,5-b]phenoxazine chromophore. Among these, neo-actinomycin D, with an unprecedented molecular formula, represents the highest molecular weight member in the actinomycin family. Actinomycins 1-3 exhibited antimicrobial activity against multiple resistant "ESKAPE" pathogens with MIC values ranging from 1.25 to 80.0 µg mL-1. In addition, 1-3 showed potent cytotoxic activities against the HepG2 liver carcinoma cell line with IC50 values of 0.10, 0.32, and 0.024 µM, respectively. Furthermore, 1 inhibited cell proliferation by inducing G0-G1 phase arrest in the cell cycle.


Subject(s)
Antineoplastic Agents , Streptomyces , Dactinomycin , Streptomyces/metabolism , Antineoplastic Agents/pharmacology , Spectrum Analysis , Amino Acids/metabolism
9.
J Agric Food Chem ; 71(1): 469-479, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36576094

ABSTRACT

Panax notoginseng saponins (PNS) are the most important bioactive components of P. Notoginseng. In this paper, an evaluation of the pharmacokinetics and oral absolute bioavailability of PNS was carried out following intravenous and oral administration of PNS to Sprague-Dawley rats. The plasma concentration of 28 PNS was determined using a validated UPLC-MS/MS system. The results demonstrated that Rb1(32.8%), Rg1(41.4%), R1(9.4%), Re(4.5%), and Rd(3.5%) are the five main ingredients of PNS for administration. After oral administration, it was found that the area under the curve (AUC0-72 h) for these five major saponins was significantly different. AUC0-72 h of Rb1 and Rd accounted for about 60% of all PNS exposure, while AUC0-72 h of Rg1 and R1 only accounted for 0.7%, and Re was undetectable in plasma. Also, PPD, PPT, and CK were detected as the major PNS metabolites in vivo. Furthermore, it was shown that the total oral bioavailability of PNS was only 1.2%.


Subject(s)
Panax notoginseng , Saponins , Rats , Animals , Rats, Sprague-Dawley , Biological Availability , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Tandem Mass Spectrometry/methods
10.
iRadiology ; 1(4): 320-339, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38737136

ABSTRACT

Pyrophosphate (PPi) anions are crucial in numerous biological and ecological processes involved in energy conversion, enzymatic reactions, and metabolic regulation along with adenosine. They are also significant biological markers for various processes related to diseases. Fluorescent PPi sensors would enable visual and/or biological detection in convenient settings. However, the current availability of commercial sensors has been limited to costly enzymes that are not compatible for imaging. Sensor development has also encountered challenges such as poor selectivity and stability, and limited practical applications. In this review, we analyze the situation of PPi sensing via commercial kits and focus on sensors that use metal complexes. We address their designs, sensing mechanisms, selectivities and detection limits. Finally, we discuss limitations and perspectives for PPi detection and imaging.

11.
J Org Chem ; 87(23): 15998-16010, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36395479

ABSTRACT

A unique ring C-expanded angucyclinone, oxemycin A (1), and seven new ring-cleavage derivatives (2-5 and 9-11) were isolated from the marine actinomycete Streptomyces pratensis KCB-132, together with eight known analogues (6-8 and 12-16). Their structures were elucidated by spectroscopic analyses, single-crystal X-ray diffractions, and NMR and ECD calculations. Among these atypical angucyclinones, compound 1 represented the first seven-membered ketoester in the angucyclinone family, which sheds light on the origin of fragmented angucyclinones with C-ring cleavage at C-12/C-12a in the Baeyer-Villiger hypothesis, such as 2-4, while the related "nonoxidized" analogues 5-8 seem to originate from a diverse pathway within the Grob fragmentation hypothesis. Additionally, we have succeeded in the challenging separation of elmenols E and F (12) into their four stereoisomers, which remained stable in aprotic solvents but rapidly racemized under protic conditions. Furthermore, the absolute configurations of LS1924 and its isomers (14 and 15) were assigned by ECD calculations for the first time. Surprisingly, these two bicyclic acetals are susceptible to hydrolysis in solution, resulting in fragmented derivatives 17 and 18 with C-ring cleavage between C-6a and C-7. Compared with ring C-modified angucyclinones, ring A-cleaved 11 was more active to multiple resistant "ESKAPE" pathogens with MIC values ranging from 4.7 to 37.5 µg/mL.


Subject(s)
Actinobacteria , Streptomyces , Anthraquinones , Acetals
12.
Article in English | MEDLINE | ID: mdl-35795284

ABSTRACT

Background: Beta-amyloid (Aß) peptide is a widely recognized pathological marker of Alzheimer's disease (AD). Salidroside and Hedysari Radix polysaccharide (HRP) were extracted from Chinese herb medicine Rhodiola rosea L and Hedysarum polybotrys Hand-Mazz, respectively. The neuroprotective effects and mechanisms of the combination of salidroside and Hedysari Radix polysaccharide (CSH) against Aß 25-35 induced neurotoxicity remain unclear. Objective: This study aims to investigate the neuroprotective effects and pharmacological mechanisms of CSH on Aß 25-35-induced HT22 cells. Materials and Methods: HT22 cells were pretreated with various concentrations of salidroside or HRP for 24 h, followed by exposed to 20 µm Aß 25-35 in the presence of salidroside or RHP for another 24 h. In a CSH protective assay, HT22 cells were pretreated with 40 µm salidroside and 20 µg/mL HRP for 24 h. The cell viability assay, cell morphology observation, determination of mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and cell apoptosis rate were performed. The mRNA expression of protein kinase C-beta (PKCß), Bax, and Bcl-2 were measured by qRT-PCR. The protein expression levels of cleaved caspase-3, Cyt-C, PKCß, phospho-ERK1/2, Bax, and Bcl-2 were measured by Western blot. Results: CSH treatment increased cell viability, MMP, and decreased ROS generation in Aß 25-35-induced HT22 cells. PKCß and Bcl-2 mRNA expression were elevated by CSH while Bax was decreased. CSH increased the protein expression levels of PKCß, Bcl-2, and phospho-ERK1/2, and decreased those of Bax, Cyt-C, and cleaved caspase-3. Conclusions: CSH treatment have protective effects against Aß 25-35-induced cytotoxicity through decreasing ROS levels, increasing MMP, inhibiting early apoptosis, and regulating PKC/ERK pathway in HT22 cells. CSH may be a potential therapeutic agent for treating or preventing neurodegenerative diseases.

13.
Chin Med ; 17(1): 82, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35787281

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease. Ferroptosis plays a critical role in neurodegenerative diseases. Nuclear factor E2-related factor 2 (Nrf2) is considered an important factor in ferroptosis. Studies have demonstrated that salidroside has a potential therapeutic effect on AD. The intrinsic effect of salidroside on ferroptosis is unclear. The purpose of this study was to investigate the protective effects and pharmacological mechanisms of salidroside on alleviating neuronal ferroptosis in Aß1-42-induced AD mice and glutamate-injured HT22 cells. METHODS: HT22 cells were injured by glutamate (Glu), HT22 cells transfected with siRNA Nrf2, and Aß1-42-induced WT and Nrf2-/-AD mice were treated with salidroside. The mitochondria ultrastructure, intracellular Fe2+, reactive oxygen species, mitochondrial membrane potential, and lipid peroxidation of HT22 cells were detected. Malondialdehyde, reduced glutathione, oxidized glutathione disulfide, and superoxide dismutase were measured. The novel object recognition test, Y-maze, and open field test were used to investigate the protective effects of salidroside on Aß1-42-induced WT and Nrf2-/-AD mice. The protein expressions of PTGS2, GPX4, Nrf2, and HO1 in the hippocampus were investigated by Western blot. RESULTS: Salidroside increased the cell viability and the level of MMP of Glu-injured HT22 cells, reduced the level of lipid peroxidation and ROS, and increased GPX4 and SLC7A11 protein expressions. These changes were not observed in siRNA Nrf2 transfected HT22 cells. Salidroside improved the ultrastructural changes in mitochondria of HT22 cells and Aß1-42-induced AD mice, but not in Aß1-42-induced Nrf2-/-AD mice. Salidroside increased protein expression levels of GPX4, HO1, and NQO1 and decreased protein expression of PTGS2 in Aß1-42-induced AD mice but not in Aß1-42-induced Nrf2-/-AD mice. CONCLUSIONS: Salidroside plays a neuroprotective role by inhibiting neuronal ferroptosis in Aß1-42-induced AD mice and Glu-injured HT22 cells, and its mechanism is related to activation of the Nrf2/HO1 signaling pathway.

14.
J Enzyme Inhib Med Chem ; 37(1): 1514-1526, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35616298

ABSTRACT

A series of novel dual A2A/A2B AR antagonists based on the triazole-pyrimidine-methylbenzonitrile core were designed and synthesised. The A2A AR antagonist cAMP functional assay results were encouraging for most target compounds containing quinoline or its open-ring bioisosteres. In addition, compound 7i displayed better inhibitory activity on A2B AR (IC50 14.12 nM) and higher potency in IL-2 production than AB928. Moreover, molecular docking studies were carried out to explain the rationality of molecular design and the activity of compound 7i. Further studies on 7f and 7i revealed good liver microsomes stabilities and acceptable in vivo PK profiles. This study provides insight into the future development of dual A2A/A2B AR antagonists for cancer immunotherapy.


Subject(s)
Purinergic P1 Receptor Antagonists , Triazoles , Adenosine A2 Receptor Antagonists/pharmacology , Molecular Docking Simulation , Pyrimidines/pharmacology , Receptor, Adenosine A2A , Receptor, Adenosine A2B , Triazoles/pharmacology
15.
AAPS PharmSciTech ; 23(3): 85, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35288801

ABSTRACT

Cannabidiol (CBD) has poor water solubility and is subjected to extensive first-pass metabolism. These absorption obstacles are responsible for low and variable oral bioavailability of CBD. This study endeavored to improve CBD bioavailability by intramuscular (IM) injection of CBD nanocrystals (CBD-NC). The nanocrystals were prepared by antisolvent precipitation method and were characterized in terms of the particle size, polydispersity index (PDI), zeta potential, morphology, and crystalline status. CBD-NC displayed a particle size of 141.7±1.5 nm, a PDI of 0.18±0.01, and a zeta potential of -25.73 mV. CBD-NC freeze-dried powder using bovine serum albumin (BSA) as cryoprotectant had good redispersibility, and the average particle size was 139.1±1.4 nm after reconstitution. Moreover, these freeze-dried powders were characterized for drug loading and pH and were evaluated for in vitro dissolution and in vivo studies in a rat model. The in vivo results showed that AUC0-24 h and Cmax of CBD by IM injection of CBD nanocrystals increased significantly compared with that of oral (P.O) administration of CBD nanocrystals and CBD oil solution. This underlines the nano-sized CBD could be suggested as a practical and simple nanosystem for IM delivery with improved bioavailability. More importantly, these results pave the way for future development of CBD-NC retentive dosage forms. Graphical abstract.


Subject(s)
Cannabidiol , Nanoparticles , Animals , Biological Availability , Nanoparticles/chemistry , Particle Size , Rats , Solubility
16.
J Ginseng Res ; 46(1): 167-174, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35058733

ABSTRACT

BACKGROUND: 20(S)-protopanaxadiol (20(S)-PPD), one of the main active metabolites of ginseng, performs a broad spectrum of anti-tumor effects. Our aims are to search out new strategies to enhance anti-tumor effects of natural products, including 20(S)-PPD. In recent years, fasting has been shown to be multi-functional on tumor progression. Here, the effects of fasting combined with 20(S)-PPD on hepatocellular carcinoma growth, apoptosis, migration, invasion and cell cycle were explored. METHODS: CCK-8 assay, trypan blue dye exclusion test, imagings photographed by HoloMonitorTM M4, transwell assay and flow cytometry assay were performed for functional analyses on cell proliferation, morphology, migration, invasion, apoptosis, necrosis and cell cycle. The expressions of genes on protein levels were tested by western blot. Tumor-bearing mice were used to evaluate the effects of intermittent fasting combined with 20(S)-PPD. RESULTS: We firstly confirmed that fasting-mimicking increased the anti-proliferation effect of 20(S)-PPD in human HepG2 cells in vitro. In fasting-mimicking culturing medium, the apoptosis and necrosis induced by 20(S)-PPD increased and more cells were arrested at G0-G1 phase. Meanwhile, invasion and migration of cells were decreased by down-regulating the expressions of matrix metalloproteinase (MMP)-2 and MMP-9 in fasting-mimicking medium. Furthermore, the in vivo study confirmed that intermittent fasting enhanced the tumor growth inhibition of 20(S)-PPD in H22 tumor-bearing mice without obvious side effects. CONCLUSION: Fasting significantly sensitized HCC cells to 20(S)-PPD in vivo and in vitro. These data indicated that dietary restriction can be one of the potential strategies of chinese medicine or its active metabolites against hepatocellular carcinoma.

18.
Chirality ; 34(2): 421-427, 2022 02.
Article in English | MEDLINE | ID: mdl-34806785

ABSTRACT

Atramycin C (1), one new angucycline bearing an O-6 rhamnose side chain, along with one new highly hydroxylated angucyclinone emycin G (2), and ten known analogs (3-12) were isolated from the marine-derived Streptomyces sp. strain BHB-032. Their structures were assigned by spectroscopic analysis and comparison with literature data. The absolute configuration of the sugar unit of 1 was assigned as 6-O-α-l-rhamnoside, based on the analysis of the coupling constants and chemical derivatization, whereas the absolute configuration of 2 was determined by X-ray diffraction. Furthermore, the stereochemistry of saccharothrixin A (3) and SNA-8073-A (4) was established unequivocally by X-ray crystallography for the first time. Compounds 1 and 2 exhibited moderate antimicrobial activities with minimum inhibitory concentration (MIC) values ranging from 16 to 64 µg/ml.


Subject(s)
Streptomyces , Anthraquinones/chemistry , Anthraquinones/pharmacology , Microbial Sensitivity Tests , Molecular Structure , Stereoisomerism , Streptomyces/chemistry
19.
Front Chem ; 9: 756962, 2021.
Article in English | MEDLINE | ID: mdl-34712650

ABSTRACT

Angucyclines and angucyclinones represent the largest family of type II PKS-engineered natural products. Chemical analysis of a marine Streptomyces sp. KCB-132 yielded three new members, actetrophenone A (1) and actetrophenols A-B (2-3). Their structures were elucidated by NMR spectroscopy, X-ray crystallography and CD calculations. Actetrophenone A (1) is the first representative of a novel-type angucyclinone bearing a nonaromatic D-ring. Actetrophenol A (2) features a highly reduced and aromatized four-ring system, which is unprecedented for natural products. While (R a )- and (S a )-actetrophenol B (3) bear an unprecedented N-acetyltryptamine-substituted tetraphene core skeleton, this is the first report of a pair of atropisomeric isomers in the angucyclinone family. Actetrophenol A (2) exhibits remarkable antibiotic activity, notably including potent activity to multiple resistant Staphylococcus aureus and Enterococcus faecium with MIC values of 4 µg/ml, in contrast, the positive control antimicrobial agent penicillin was inactive up to 32 µg/ml.

20.
Mater Sci Eng C Mater Biol Appl ; 127: 112202, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34225854

ABSTRACT

Acellular Dermal Matrix (ADM) is mainly made with human or porcine skins and has the risk of zoonotic virus transmission. The fish skin-derived ADM could overcome the shortcoming. Fish skin acellular matrix has been used as wound dressing, but there is few systematic studies on tilapia-skin acellular dermal matrix (TS-ADM). In the present study, a novel TS-ADM was made by an alkaline decellularization process and γ-irradiation. The physical properties, biocompatibility, pre-clinical safety and wound healing activity of TS-ADM were systematically evaluated for its value as a functionally bioactive wound dressing. Histopathological analysis (hematoxylin and eosin staining, 4,6-diamidino-2-phenylindole (DAPI) staining) and DNA quantification both proved that the nuclear components of tilapia skin were removed sufficiently in TS-ADM. Compared to the commercial porcine acellular dermal matrix (DC-ADM), TS-ADM has distinctive features in morphology, thermal stability, degradability and water vapor transmission. TS-ADM was more readily degradable than DC-ADM in vitro and in vivo. In both rat and mini-pig skin wound healing experiments, TS-ADM was shown to significantly promote granulation growth, collagen deposition, angiogenesis and re-epithelialization, which may be attributed to the high expression of transforming growth factor-beta 1 (TGF-ß1), alpha-smooth muscle actin (α-SMA) and CD31. Herein, the novel TS-ADM, used as a low-cost bioactive dressing, could form a microenvironment conducive to wound healing.


Subject(s)
Acellular Dermis , Skin, Artificial , Tilapia , Animals , Rats , Skin Transplantation , Swine , Swine, Miniature , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL