Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Adv Mater ; 36(15): e2307782, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38303684

ABSTRACT

Bio/ecoresorbable electronic systems create unique opportunities in implantable medical devices that serve a need over a finite time period and then disappear naturally to eliminate the need for extraction surgeries. A critical challenge in the development of this type of technology is in materials that can serve as thin, stable barriers to surrounding ground water or biofluids, yet ultimately dissolve completely to benign end products. This paper describes a class of inorganic material (silicon oxynitride, SiON) that can be formed in thin films by plasma-enhanced chemical vapor deposition for this purpose. In vitro studies suggest that SiON and its dissolution products are biocompatible, indicating the potential for its use in implantable devices. A facile process to fabricate flexible, wafer-scale multilayer films bypasses limitations associated with the mechanical fragility of inorganic thin films. Systematic computational, analytical, and experimental studies highlight the essential materials aspects. Demonstrations in wireless light-emitting diodes both in vitro and in vivo illustrate the practical use of these materials strategies. The ability to select degradation rates and water permeability through fine tuning of chemical compositions and thicknesses provides the opportunity to obtain a range of functional lifetimes to meet different application requirements.


Subject(s)
Absorbable Implants , Electronics , Water/chemistry
2.
Sci Adv ; 10(2): eadk6301, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38198552

ABSTRACT

Miniaturized mobile electronic system is an effective candidate for in situ exploration of confined spaces. However, realizing such system still faces challenges in powering issue, untethered mobility, wireless data acquisition, sensing versatility, and integration in small scales. Here, we report a battery-free, wireless, and miniaturized soft electromagnetic swimmer (SES) electronic system that achieves multiple monitoring capability in confined water environments. Through radio frequency powering, the battery-free SES system demonstrates untethered motions in confined spaces with considerable moving speed under resonance. This system adopts soft electronic technologies to integrate thin multifunctional bio/chemical sensors and wireless data acquisition module, and performs real-time water quality and virus contamination detection with demonstrated promising limits of detection and high sensitivity. All sensing data are transmitted synchronously and displayed on a smartphone graphical user interface via near-field communication. Overall, this wireless smart system demonstrates broad potential for confined space exploration, ranging from pathogen detection to pollution investigation.


Subject(s)
Electricity , Water Quality , Communication , Electric Power Supplies , Electronics
3.
Sci Adv ; 9(46): eadh8083, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37967195

ABSTRACT

The advent of implantable bioelectronic devices offers prospective solutions toward health monitoring and disease diagnosis and treatments. However, advances in power modules have lagged far behind the tissue-integrated sensor nodes and circuit units. Here, we report a soft implantable power system that monolithically integrates wireless energy transmission and storage modules. The energy storage unit comprises biodegradable Zn-ion hybrid supercapacitors that use molybdenum sulfide (MoS2) nanosheets as cathode, ion-crosslinked alginate gel as electrolyte, and zinc foil as anode, achieving high capacitance (93.5 mF cm-2) and output voltage (1.3 V). Systematic investigations have been conducted to elucidate the charge storage mechanism of the supercapacitor and to assess the biodegradability and biocompatibility of the materials. Furthermore, the wirelessly transmitted energy can not only supply power directly to applications but also charge supercapacitors to ensure a constant, reliable power output. Its power supply capabilities have also been successfully demonstrated for controlled drug delivery.


Subject(s)
Alginates , Prostheses and Implants , Prospective Studies , Drug Delivery Systems , Zinc
4.
Adv Sci (Weinh) ; 10(27): e2303429, 2023 09.
Article in English | MEDLINE | ID: mdl-37518771

ABSTRACT

Myocardial infarction (MI) is one of the leading causes of death and disability. Recently developed cardiac patches provide mechanical support and additional conductive paths to promote electrical signal propagation in the MI area to synchronize cardiac excitation and contraction. Cardiac patches based on conductive polymers offer attractive features; however, the modest levels of elasticity and high impedance interfaces limit their mechanical and electrical performance. These structures also operate as permanent implants, even in cases where their utility is limited to the healing period of tissue damaged by the MI. The work presented here introduces a highly conductive cardiac patch that combines bioresorbable metals and polymers together in a hybrid material structure configured in a thin serpentine geometry that yields elastic mechanical properties. Finite element analysis guides optimized choices of layouts in these systems. Regular and synchronous contraction of human induced pluripotent stem cell-derived cardiomyocytes on the cardiac patch and ex vivo studies offer insights into the essential properties and the bio-interface. These results provide additional options in the design of cardiac patches to treat MI and other cardiac disorders.


Subject(s)
Induced Pluripotent Stem Cells , Myocardial Infarction , Humans , Absorbable Implants , Myocytes, Cardiac , Polymers/chemistry , Technology
5.
Small ; 19(41): e2304004, 2023 10.
Article in English | MEDLINE | ID: mdl-37300351

ABSTRACT

Multifunctional electronic skins (e-skins) that can sense various stimuli have demonstrated increasing potential in many fields. However, most e-skins are human-oriented that cannot work in hash environments such as high temperature, underwater, and corrosive chemicals, impairing their applications, especially in human-machine interfaces, intelligent machines, robotics, and so on. Inspired by the crack-shaped sensory organs of spiders, an environmentally robust and ultrasensitive multifunctional e-skin is developed. By developing a polyimide-based metal crack-localization strategy, the device has excellent environment adaptability since polyimide has high thermal stability and chemical durability. The localized cracked part serves as an ultrasensitive strain sensing unit, while the non-cracked serpentine part is solely responsible for temperature. Since the two units are made of the same material and process, the signals are decoupled easily. The proposed device is the first multifunctional e-skin that can be used in harsh environments, therefore is of great potential for both human and robot-oriented applications.


Subject(s)
Robotics , Wearable Electronic Devices , Humans , Skin , Delivery of Health Care , Sensation
6.
Small ; 19(33): e2208015, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37026672

ABSTRACT

Flexible pressure sensors play an increasingly important role in a wide range of applications such as human health monitoring, soft robotics, and human-machine interfaces. To achieve a high sensitivity, a conventional approach is introducing microstructures to engineer the internal geometry of the sensor. However, this microengineering strategy requires the sensor's thickness to be typically at hundreds to thousands of microns level, impairing the sensor's conformability on surfaces with microscale roughness like human skin. In this manuscript, a nanoengineering strategy is pioneered that paves a path to resolve the conflicts between sensitivity and conformability. A dual-sacrificial-layer method is initiated that facilitates ease of fabrication and precise assembly of two functional nanomembranes to manufacture the thinnest resistive pressure sensor with a total thickness of ≈850 nm that achieves perfectly conformable contact to human skin. For the first time, the superior deformability of the nanothin electrode layer on a carbon nanotube conductive layer is utilized by the authors to achieve a superior sensitivity (92.11 kPa-1 ) and an ultralow detection limit (<0.8 Pa). This work offers a new strategy that is able to overcome a key bottleneck for current pressure sensors, therefore is of potential to inspire the research community for a new wave of breakthroughs.

7.
Nat Biomed Eng ; 7(10): 1252-1269, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37106153

ABSTRACT

Fully implantable wireless systems for the recording and modulation of neural circuits that do not require physical tethers or batteries allow for studies that demand the use of unconstrained and freely behaving animals in isolation or in social groups. Moreover, feedback-control algorithms that can be executed within such devices without the need for remote computing eliminate virtual tethers and any associated latencies. Here we report a wireless and battery-less technology of this type, implanted subdermally along the back of freely moving small animals, for the autonomous recording of electroencephalograms, electromyograms and body temperature, and for closed-loop neuromodulation via optogenetics and pharmacology. The device incorporates a system-on-a-chip with Bluetooth Low Energy for data transmission and a compressed deep-learning module for autonomous operation, that offers neurorecording capabilities matching those of gold-standard wired systems. We also show the use of the implant in studies of sleep-wake regulation and for the programmable closed-loop pharmacological suppression of epileptic seizures via feedback from electroencephalography. The technology can support a broader range of applications in neuroscience and in biomedical research with small animals.

8.
Small ; 19(32): e2206839, 2023 08.
Article in English | MEDLINE | ID: mdl-37069777

ABSTRACT

Peripheral nerve injuries cause various disabilities related to loss of motor and sensory functions. The treatment of these injuries typically requires surgical operations for improving functional recovery of the nerve. However, capabilities for continuous nerve monitoring remain a challenge. Herein, a battery-free, wireless, cuff-type, implantable, multimodal physical sensing platform for continuous in vivo monitoring of temperature and strain from the injured nerve is introduced. The thin, soft temperature, and strain sensors wrapped around the nerve exhibit good sensitivity, excellent stability, high linearity, and minimum hysteresis in relevant ranges. In particular, the strain sensor integrated with circuits for temperature compensation provides reliable, accurate strain monitoring with negligible temperature dependence. The system enables power harvesting and data communication to wireless, multiple implanted devices wrapped around the nerve. Experimental evaluations, verified by numerical simulations, with animal tests, demonstrate the feasibility and stability of the sensor system, which has great potential for continuous in vivo nerve monitoring from an early stage to complete regeneration.


Subject(s)
Electric Power Supplies , Prostheses and Implants , Animals , Temperature , Wireless Technology
9.
Sci Adv ; 9(8): eade4687, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36812305

ABSTRACT

Chronic wounds, particularly those associated with diabetes mellitus, represent a growing threat to public health, with additional notable economic impacts. Inflammation associated with these wounds leads to abnormalities in endogenous electrical signals that impede the migration of keratinocytes needed to support the healing process. This observation motivates the treatment of chronic wounds with electrical stimulation therapy, but practical engineering challenges, difficulties in removing stimulation hardware from the wound site, and absence of means to monitor the healing process create barriers to widespread clinical use. Here, we demonstrate a miniaturized wireless, battery-free bioresorbable electrotherapy system that overcomes these challenges. Studies based on a splinted diabetic mouse wound model confirm the efficacy for accelerated wound closure by guiding epithelial migration, modulating inflammation, and promoting vasculogenesis. Changes in the impedance provide means for tracking the healing process. The results demonstrate a simple and effective platform for wound site electrotherapy.


Subject(s)
Diabetes Mellitus , Electric Stimulation Therapy , Mice , Animals , Absorbable Implants , Electric Impedance , Wound Healing , Disease Models, Animal , Inflammation
10.
Sci China Technol Sci ; 66(1): 223-232, 2023.
Article in English | MEDLINE | ID: mdl-36593863

ABSTRACT

Elastomeric encapsulation layers are widely used in soft, wearable devices to physically isolate rigid electronic components from external environmental stimuli (e.g., stress) and facilitate device sterilization for reusability. In devices experiencing large deformations, the stress-isolation effect of the top encapsulation layer can eliminate the damage to the electronic components caused by external forces. However, for health monitoring and sensing applications, the strain-isolation effect of the bottom encapsulation layer can partially block the physiological signals of interest and degrade the measurement accuracy. Here, an analytic model is developed for the strain- and stress-isolation effects present in wearable devices with elastomeric encapsulation layers. The soft, elastomeric encapsulation layers and main electronic components layer are modeled as transversely isotropic-elastic mediums and the strain- and stress-isolation effects are described using isolation indexes. The analysis and results show that the isolation effects strongly depend on the thickness, density, and elastic modulus of both the elastomeric encapsulation layers and the main electronic component layer. These findings, combined with the flexible mechanics design strategies of wearable devices, provide new design guidelines for future wearable devices to protect them from external forces while capturing the relevant physiological signals underneath the skin. Electronic Supplementary Material: Supplementary material is available in the online version of this article at 10.1007/s11431-022-2034-y.

11.
Sci Robot ; 8(74): eadd1053, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36652505

ABSTRACT

Bioengineering approaches that combine living cellular components with three-dimensional scaffolds to generate motion can be used to develop a new generation of miniature robots. Integrating on-board electronics and remote control in these biological machines will enable various applications across engineering, biology, and medicine. Here, we present hybrid bioelectronic robots equipped with battery-free and microinorganic light-emitting diodes for wireless control and real-time communication. Centimeter-scale walking robots were computationally designed and optimized to host on-board optoelectronics with independent stimulation of multiple optogenetic skeletal muscles, achieving remote command of walking, turning, plowing, and transport functions both at individual and collective levels. This work paves the way toward a class of biohybrid machines able to combine biological actuation and sensing with on-board computing.


Subject(s)
Robotics , Robotics/methods , Muscle, Skeletal/physiology , Electronics , Walking
12.
Small ; 19(9): e2205048, 2023 03.
Article in English | MEDLINE | ID: mdl-36534830

ABSTRACT

Repositioning is a common guideline for the prevention of pressure injuries of bedridden or wheelchair patients. However, frequent repositioning could deteriorate the quality of patient's life and induce secondary injuries. This paper introduces a method for continuous multi-site monitoring of pressure and temperature distribution from strategically deployed sensor arrays at skin interfaces via battery-free, wireless ionic liquid pressure sensors. The wirelessly delivered power enables stable operation of the ionic liquid pressure sensor, which shows enhanced sensitivity, negligible hysteresis, high linearity and cyclic stability over relevant pressure range. The experimental investigations of the wireless devices, verified by numerical simulation of the key responses, support capabilities for real-time, continuous, long-term monitoring of the pressure and temperature distribution from multiple sensor arrays. Clinical trials on two hemiplegic patients confined on bed or wheelchair integrated with the system demonstrate the feasibility of sensor arrays for a decrease in pressure and temperature distribution under minimal repositioning.


Subject(s)
Ionic Liquids , Wheelchairs , Humans , Temperature , Wireless Technology , Skin
13.
Sci Adv ; 8(51): eade2450, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36563155

ABSTRACT

Tactile sensations are mainly transmitted to each other by physical touch. Wireless touch perception could be a revolution for us to interact with the world. Here, we report a wireless self-sensing and haptic-reproducing electronic skin (e-skin) to realize noncontact touch communications. A flexible self-sensing actuator was developed to provide an integrated function in both tactile sensing and haptic feedback. When this e-skin was dynamically pressed, the actuator generated an induced voltage as tactile information. Via wireless communication, another e-skin could receive this tactile data and run a synchronized haptic reproduction. Thus, touch could be wirelessly conveyed in bidirections between two users as a touch intercom. Furthermore, this e-skin could be connected with various smart devices to form a touch internet of things where one-to-one and one-to-multiple touch delivery could be realized. This wireless touch presents huge potentials in remote touch video, medical care/assistance, education, and many other applications.

14.
Sci Adv ; 8(51): eade0838, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36542721

ABSTRACT

DNA and proteins fold in three dimensions (3D) to enable functions that sustain life. Emulation of such folding schemes for functional materials can unleash enormous potential in advancing a wide range of technologies, especially in robotics, medicine, and telecommunication. Here, we report a microfolding strategy that enables formation of 3D morphable microelectronic systems integrated with various functional materials, including monocrystalline silicon, metallic nanomembranes, and polymers. By predesigning folding hosts and configuring folding pathways, 3D microelectronic systems in freestanding forms can transform across various complex configurations with modulated functionalities. Nearly all transitional states of 3D microelectronic systems achieved via the microfolding assembly can be easily accessed and modulated in situ, offering functional versatility and adaptability. Advanced morphable microelectronic systems including a reconfigurable microantenna for customizable telecommunication, a 3D vibration sensor for hand-tremor monitoring, and a bloomable robot for cardiac mapping demonstrate broad utility of these assembly schemes to realize advanced functionalities.

16.
Science ; 377(6601): 109-115, 2022 07.
Article in English | MEDLINE | ID: mdl-35771907

ABSTRACT

Implantable devices capable of targeted and reversible blocking of peripheral nerve activity may provide alternatives to opioids for treating pain. Local cooling represents an attractive means for on-demand elimination of pain signals, but traditional technologies are limited by rigid, bulky form factors; imprecise cooling; and requirements for extraction surgeries. Here, we introduce soft, bioresorbable, microfluidic devices that enable delivery of focused, minimally invasive cooling power at arbitrary depths in living tissues with real-time temperature feedback control. Construction with water-soluble, biocompatible materials leads to dissolution and bioresorption as a mechanism to eliminate unnecessary device load and risk to the patient without additional surgeries. Multiweek in vivo trials demonstrate the ability to rapidly and precisely cool peripheral nerves to provide local, on-demand analgesia in rat models for neuropathic pain.


Subject(s)
Absorbable Implants , Nerve Block , Neuralgia , Pain Management , Peripheral Nerves , Animals , Biocompatible Materials , Nerve Block/instrumentation , Neuralgia/therapy , Pain Management/instrumentation , Peripheral Nerves/physiopathology , Rats
17.
Nat Mater ; 21(5): 564-571, 2022 05.
Article in English | MEDLINE | ID: mdl-35501364

ABSTRACT

Realizing fully stretchable electronic materials is central to advancing new types of mechanically agile and skin-integrable optoelectronic device technologies. Here we demonstrate a materials design concept combining an organic semiconductor film with a honeycomb porous structure with biaxially prestretched platform that enables high-performance organic electrochemical transistors with a charge transport stability over 30-140% tensional strain, limited only by metal contact fatigue. The prestretched honeycomb semiconductor channel of donor-acceptor polymer poly(2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-diketo-pyrrolopyrrole-alt-2,5-bis(3-triethyleneglycoloxy-thiophen-2-yl) exhibits high ion uptake and completely stable electrochemical and mechanical properties over 1,500 redox cycles with 104 stretching cycles under 30% strain. Invariant electrocardiogram recording cycles and synapse responses under varying strains, along with mechanical finite element analysis, underscore that the present stretchable organic electrochemical transistor design strategy is suitable for diverse applications requiring stable signal output under deformation with low power dissipation and mechanical robustness.


Subject(s)
Electronics , Transistors, Electronic , Polymers/chemistry , Semiconductors , Thiophenes/chemistry
18.
Nat Protoc ; 17(4): 1073-1096, 2022 04.
Article in English | MEDLINE | ID: mdl-35173306

ABSTRACT

Wireless battery-free optogenetic devices enable behavioral neuroscience studies in groups of animals with minimal interference to natural behavior. Real-time independent control of optogenetic stimulation through near-field communication dramatically expands the realm of applications of these devices in broad contexts of neuroscience research. Dissemination of these tools with advanced functionalities to the neuroscience community requires protocols for device manufacturing and experimental implementation. This protocol describes detailed procedures for fabrication, encapsulation and implantation of recently developed advanced wireless devices in head- and back-mounted forms. In addition, procedures for standard implementation of experimental systems in mice are provided. This protocol aims to facilitate the application of wireless optogenetic devices in advanced optogenetic experiments involving groups of freely moving rodents and complex environmental designs. The entire protocol lasts ~3-5 weeks.


Subject(s)
Neurosciences , Optogenetics , Animals , Mice , Optogenetics/methods , Wireless Technology
19.
Sci Adv ; 8(2): eabl6700, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35030019

ABSTRACT

The coronavirus pandemic has highlighted the importance of developing intelligent robotics to prevent infectious disease spread. Human-machine interfaces (HMIs) give a chance of interactions between users and robotics, which play a significant role in teleoperating robotics. Conventional HMIs are based on bulky, rigid, and expensive machines, which mainly focus on robots/machines control, but lack of adequate feedbacks to users, which limit their applications in conducting complicated tasks. Therefore, developing closed-loop HMIs with both accurate sensing and feedback functions is extremely important. Here, we present a closed-loop HMI system based on skin-integrated electronics, whose electronics compliantly interface with the whole body for wireless motion capturing and haptic feedback via Bluetooth, Wireless Fidelity (Wi-Fi), and Internet. The integration of visual and haptic VR via skin-integrated electronics together into a closed-loop HMI for robotic VR demonstrates great potentials in noncontact collection of bio samples, nursing infectious disease patients and many others.

20.
Adv Sci (Weinh) ; 9(9): e2104635, 2022 03.
Article in English | MEDLINE | ID: mdl-35088587

ABSTRACT

Wearable electronics have attracted extensive attentions over the past few years for their potential applications in health monitoring based on continuous data collection and real-time wireless transmission, which highlights the importance of portable powering technologies. Batteries are the most used power source for wearable electronics, but unfortunately, they consist of hazardous materials and are bulky, which limit their incorporation into the state-of-art skin-integrated electronics. Sweat-activated biocompatible batteries offer a new powering strategy for skin-like electronics. However, the capacity of the reported sweat-activated batteries (SABs) cannot support real-time data collection and wireless transmission. Focused on this issue, soft, biocompatible, SABs are developed that can be directly integrated on skin with a record high capacity of 42.5 mAh and power density of 7.46 mW cm-2 among the wearable sweat and body fluids activated batteries. The high performance SABs enable powering electronic devices for a long-term duration, for instance, continuously lighting 120 lighting emitting diodes (LEDs) for over 5 h, and also offers the capability of powering Bluetooth wireless operation for real-time recording of physiological signals for over 6 h. Demonstrations of the SABs for powering microfluidic system based sweat sensors are realized in this work, allowing real-time monitoring of pH, glucose, and Na+ in sweat.


Subject(s)
Sweat , Wearable Electronic Devices , Electric Power Supplies , Electronics , Skin
SELECTION OF CITATIONS
SEARCH DETAIL
...