Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 922: 171216, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38412878

ABSTRACT

A large portion of Central-Western Asia is made up of contiguous closed basins, collectively termed as the Asian Endorheic Basins (AEBs). As these retention basins are only being replenished by the intermittent and scarce rainfall, global warming coupled with ever-rising human demand for water is exerting unprecedented pressures on local water and ecological security. Recent studies revealed a persistent and widespread water storage decline across the AEBs, yet the response of dryland vegetation to this recent hydroclimatic trend and a spatially explicit partitioning of the impact into the hydroclimatic factors and human activities remain largely unknown. To fill in this knowledge gap, we conducted trend and partial correlation analysis of vegetation and hydroclimatic change from 2001 to 2021 using multi-satellite observations, including vegetation greenness, total water storage anomalies (TWSA) and meteorological data. Here we show that much of the AEB (65.53 %), encompassing Mongolia Plateau, Northwest China, Qinghai Tibet Plateau, and Western Asia (except the Arabian Peninsula), exhibited a significant greening trend over the past two decades. In arid AEB, precipitation dominated the vegetation productivity trend. Such a rainfall dominance gave way to TWSA dominance in the hyper-arid AEB. We further showed that the decoupling of rainfall and hyper-arid vegetation greening was largely due to a significant expansion (17.3 %) in irrigated cropland across the hyper-arid AEB. Given the extremely harsh environment in the AEB, our results therefore raised a significant concern on the ecological and societal sustainability in this region, where a mild increase in precipitation cannot catch up the rising evaporative demand and water consumption resulted from global warming and agriculture intensification.

2.
Water Res ; 226: 119310, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36369683

ABSTRACT

Heavy metal(loid)s (HMs) have been consistently entering the food chain, imposing great harm on environment and public health. However, previous studies on the spatial dynamics and transport mechanism of HMs have been profoundly limited by the field sampling issues, such as the uneven observations of individual carriers and their spatial mismatch, especially over large-scale catchments with complex environment. In this study, a novel methodological framework for mapping HMs at catchment scale was proposed and applied, combining a species distribution model (SDM) with physical environment and human variables. Based on the field observations, we ecologicalized HMs in different carriers as different species. This enabled the proposed framework to model the 'enrichment area' of individual HMs in the geographic space (termed as the HM 'habitat') and identify their 'hotspots' (peak value points) within the catchment. Results showed the output maps of HM habitats from secondary carriers (soil, sediment, and wet deposition) well agreed with the influence of industry contaminants, hydraulic sorting, and precipitation washout process respectively, indicating the potential of SDM in modeling the spatial distributions of the HM. The derived maps of HMs from secondary carriers, along with the human and environmental variables were then input as explanatory variables in SDM to predict the spatial patterns of the final HM accumulation in river water, which was observed to have largely improved the prediction quality. These results confirmed the value of our framework to leverage SDMs from ecology perspective to study HM contamination transport at catchment scale, offering new insights not only to map the spatial HM habitats but also help locate the HM transport chains among different carriers.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Soil Pollutants/analysis , Environmental Monitoring/methods , Risk Assessment , Metals, Heavy/analysis , Soil , China
4.
Sci Total Environ ; 659: 862-871, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31096416

ABSTRACT

Ecosystems in arid and semi-arid regions are vulnerable to climatic and anthropogenic disturbances. However, our understanding of vegetation stability (including resistance and resilience, which are the abilities of ecosystems to resist perturbations and return to pre-disturbance structure or function, respectively) in response to environmental changes in dryland ecosystems remains insufficient, particularly in the absence of large-scale observations of water availability. Here we introduced GRACE monthly total water storage anomaly (TWSA) data into an autoregressive model with remote sensed EVI, air temperature and precipitation to investigate the short-term vegetation stability and its influencing factors in Central Asia (CA) during 2003-2015. The results showed that the grid-level vegetation resilience in CA increased logarithmically as mean annual precipitation (R2 = 0.33, P < 0.05) but decreased linearly with increasing mean annual temperature (R2 = 0.41, P < 0.05). Vegetation resilience was not correlated with TWSA, due to the decoupling of TWSA with precipitation both spatially and temporally in the majority of CA. At the biome level, vegetation resilience also increased as a logarithmical function of aridity index (R2 = 0.80, P < 0.05). Vegetation resistance to TWSA showed minor difference across biomes, while vegetation resistance to precipitation functioned as a parabolic curve along the aridity gradient (R2 = 0.59, P < 0.05). Our results suggest that accounting for the effects of total water column instead of precipitation only is critical in understanding vegetation-water relationships in drylands. The steep decrease in vegetation resilience in areas with high temperature and low water availability implies a high risk of collapse for these water-limited ecosystems if there are severe droughts. Furthermore, reduction in total water storage, induced by, e.g., large-scale extraction of surface runoff or shallow-layer groundwater for irrigation, can result in negative influences to natural biomes in dryland regions.


Subject(s)
Biota , Climate Change , Groundwater/analysis , Plant Dispersal , Asia, Central , China , Ecosystem , Remote Sensing Technology , Spacecraft
5.
Sci Rep ; 6: 37747, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27886216

ABSTRACT

Each year, terrestrial ecosystems absorb more than a quarter of the anthropogenic carbon emissions, termed as land carbon sink. An exceptionally large land carbon sink anomaly was recorded in 2011, of which more than half was attributed to Australia. However, the persistence and spatially attribution of this carbon sink remain largely unknown. Here we conducted an observation-based study to characterize the Australian land carbon sink through the novel coupling of satellite retrievals of atmospheric CO2 and photosynthesis and in-situ flux tower measures. We show the 2010-11 carbon sink was primarily ascribed to savannas and grasslands. When all biomes were normalized by rainfall, shrublands however, were most efficient in absorbing carbon. We found the 2010-11 net CO2 uptake was highly transient with rapid dissipation through drought. The size of the 2010-11 carbon sink over Australia (0.97 Pg) was reduced to 0.48 Pg in 2011-12, and was nearly eliminated in 2012-13 (0.08 Pg). We further report evidence of an earlier 2000-01 large net CO2 uptake, demonstrating a repetitive nature of this land carbon sink. Given a significant increasing trend in extreme wet year precipitation over Australia, we suggest that carbon sink episodes will exert greater future impacts on global carbon cycle.

6.
Blood ; 121(24): 4875-83, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23645835

ABSTRACT

By inhibiting target gene expression, microRNAs (miRNAs) play major roles in various physiological and pathological processes. miR-146a, a miRNA induced upon lipopolysaccharide (LPS) stimulation and virus infection, is also highly expressed in patients with immune disorders such as rheumatoid arthritis, Sjögren's syndrome, and psoriasis. Whether the high level of miR-146a contributes to any of these pathogenesis-related processes remains unknown. To elucidate the function of miR-146a in vivo, we generated a transgenic (TG) mouse line overexpressing miR-146a. Starting at an early age, these TG mice developed spontaneous immune disorders that mimicked human autoimmune lymphoproliferative syndrome (ALPS) with distinct manifestations, including enlarged spleens and lymph nodes, inflammatory infiltration in the livers and lungs, increased levels of double-negative T cells in peripheral blood, and increased serum immunoglobulin G levels. Moreover, with the adoptive transfer approach, we found that the B-cell population was the major etiological factor and that the expression of Fas, a direct target of miR-146a, was significantly dampened in TG germinal center B cells. These results indicate that miR-146a may be involved in the pathogenesis of ALPS by targeting Fas and may therefore serve as a novel therapeutic target.


Subject(s)
Autoimmune Lymphoproliferative Syndrome/metabolism , B-Lymphocytes/metabolism , Down-Regulation , Germinal Center/metabolism , MicroRNAs/biosynthesis , fas Receptor/biosynthesis , Animals , Autoimmune Lymphoproliferative Syndrome/genetics , Autoimmune Lymphoproliferative Syndrome/pathology , B-Lymphocytes/pathology , Germinal Center/pathology , Humans , Immunoglobulin G/blood , Mice , Mice, Inbred BALB C , Mice, Transgenic , MicroRNAs/genetics , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , fas Receptor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL