Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 753
Filter
1.
Food Chem ; 460(Pt 2): 140572, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39089041

ABSTRACT

Lipases are widely used in the modification of functional lipids, particularly in the enrichment of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). In this study, a lipase named OUC-Sb-lip2 was expressed in Yarrowia lipolytica, achieving a promising enzyme activity of 472.6 U/mL by optimizing the culture medium, notably through olive oil supplementation. A significant proportion (58.8%) of the lipase activity was located in the cells, whereas 41.2% was secreted into the supernatant. Both whole-cell and immobilized OUC-Sb-lip2 were used to enrich DHA and EPA from fish oil. The whole-cell approach increased the DHA and EPA contents to 2.59 and 2.55 times that of the original oil, respectively. Similarly, the immobilized OUC-Sb-lip2 resulted in a 2.00-fold increase in DHA and an 1.99-fold increase in EPA after a 6-h hydrolysis period. Whole cell and the immobilized OUC-Sb-lip2 retained 48.7% and 52.7% of their activity after six cycles of reuse, respectively.

2.
Opt Lett ; 49(15): 4401-4404, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090944

ABSTRACT

In this work, we unveil a novel, to the best of our knowledge, AI-based design method (AIDN1) specifically developed for photonic crystal resonator designs, capable of handling complex designs with over 10 degrees of freedom (DoFs) and considering practical fabrication uncertainties to minimize the common simulation-to-reality (sim2real) gap. Especially, we introduce an ultrashort (<5 µm) curved nanobeam resonator, which obtains an ultrahigh theoretical quality factor (Q-factor) of 2 × 107 and maintains a theoretical Q-factor above 105 even under high fabrication variations. Importantly, we emphasize that AIDN1 is generalizable and our work serves as a solid foundation for future laser fabrication endeavors beyond the realm of ultrashort 1D photonic crystal (PhC) resonators.

3.
Nutr Cancer ; : 1-8, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160664

ABSTRACT

OBJECTIVE: To investigate the association between sarcopenia, short-term efficacy, and long-term survival in patients with extensive small-cell lung cancer (SCLC) treated with standard first-line immunochemotherapy. METHODS: A total of 63 patients initially diagnosed with extensive-stage small cell lung cancer were enrolled in the prospective study from December 1, 2020 to December 31, 2022. The clinical characteristics, body composition, blood test results, and image data were obtained before treatment. Patients were divided into sarcopenia and non-sarcopenia groups according to the diagnostic criteria of the Asian Sarcopenia Working Group 2019. The primary outcome was overall survival (OS) and comprehensive survival analyses were performed. Secondary outcomes included short-term efficacy and adverse events associated with first-line immunochemotherapy. RESULTS: The median age of the 63 patients enrolled in our study was 63.0 years (40-80 years). The incidence of sarcopenia was 19.0% (12/63) in patients with extensive SCLC. Compared with non-sarcopenia patients, extensive-stage SCLC patients with sarcopenia were significantly older (69.0 vs. 62.0, P = 0.017), and had lower body mass index (BMI) (20.29 vs. 24.27, P < 0.001), hand grip strength (HGS) (20.42 vs. 30.75, P < 0.001), and albumin (35.9 vs. 41.40, P < 0.001). The objective response rate after two cycles of standard first-line immunochemotherapy in the sarcopenia group was lower than in the non-sarcopenia group (30.0 vs. 78.9%, P = 0.012). There was no significant difference in chemotherapy-related hematological toxicity between the two groups. During a median follow-up of 15 months (3-33 months), patients with extensive SCLC had a median OS of 24 months, with 1-year survival of 75% and 2-year survival of 52%, respectively. Compared to non-sarcopenia patients, the median OS in the sarcopenia group was significantly shorter (9 vs. 24 months, P = 0.0014). Multivariate Cox analysis showed that sarcopenia was an independent risk factor for OS in patients with extensive SCLC (HR = 4.993, 95%CI = 1.106-22.538, P = 0.037). CONCLUSIONS: Patients with Extensive SCLC and sarcopenia had worse clinical outcomes and shorter OS. Sarcopenia is a prognostic factor affecting first-line treatment efficacy and long-term survival of patients with SCLC in the era of immunotherapy.

4.
Adv Healthc Mater ; : e2401581, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129228

ABSTRACT

Artificial enzymes, especially nanozymes, have attracted wide attention due to their controlled catalytic activity, selectivity, and stability. The rising Cerium-based nanozymes exhibit unique SOD-like activity, and Vanadium-based nanozymes always hold excellent GPx-like activity. However, most inflammatory diseases involve polymerase biocatalytic processes that require multi-enzyme activities. The nanocomposite can fulfill multi-enzymatic activity simultaneously, but large nanoparticles (>10 nm) cannot be excreted rapidly, leading to biosafety challenges. Herein, atomically precise Ce12V6 clusters with a size of 2.19 nm are constructed. The Ce12V6 clusters show excellent glutathione peroxidase (GPx) -like activity with a significantly lower Michaelis-Menten constant (Km, 0.0125 mM versus 0.03 mM of natural counterpart) and good activities mimic superoxide dismutase (SOD) and peroxidase (POD). The Ce12V6 clusters exhibit the ability to scavenge the ROS including O2 ·- and H2O2 via the cascade reactions of multi-enzymatic activities. Further, the Ce12V6 clusters modulate the proinflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) and consequently rescue the multi-organ failure in the lipopolysaccharide (LPS)-induced sepsis mouse model. With excellent biocompatibility, the Ce12V6 clusters show promise in the treatment of sepsis.

5.
Poult Sci ; 103(11): 104170, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39154611

ABSTRACT

Colibacillosis, a bacterial disease caused by avian pathogenic E. coli (APEC), is a prevalent condition in the poultry industry, resulting in substantial economic losses annually. Previously, we identified PTEN as a crucial candidate gene that may play a significant role in chicken's immune response to APEC infection. Bioinformatics analysis indicated that the PTEN protein was unstable, hydrophilic and nuclear localization, with multiple putative phosphorylation sites and a high degree of similarity to duck and goose PTEN. Moreover, PTEN exhibited high expression levels in various tissues such as the stomach, cecum, small intestine, spleen, thymus, harderian gland, muscle, cerebrum, cerebellum, lung, and liver in comparison to heart tissue. Overexpression of PTEN resulted in a significant promotion of the expression level of pro-apoptosis genes and inflammatory mediators, as well as the production of NO, with or without APEC infection, which led to cellular injury. Furthermore, overexpression of PTEN was found to regulate the expression levels of autophagy related genes, regardless of APEC infection. Additionally, PTEN was a target gene of gga-miR-20a-5p and regulated by gga-miR-20a-5p upon APEC infection. Taken together, these findings establish a foundation for investigating the biological function of chicken PTEN, providing a potential target for future treatments against APEC infection as well as the breeding of genetically resistant poultry.

6.
Nano Lett ; 24(33): 10337-10347, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39120122

ABSTRACT

Breast cancer (BC) is the most common tumor worldwide and requires crucial molecular typing for treatment and prognosis assessment. Currently, approaches like pathological staining, immunohistochemistry (IHC), and immunofluorescence (IF) face limitations due to the low signal-to-background ratio (SBR) and high tumor heterogeneity, resulting in a high misdiagnosis rate. Fluorescent assay in the second near-infrared region (NIR-II, 1000-1700 nm) exhibits ultrahigh SBR owing to diminished scattering and tissue autofluorescence. Here, we present a NIR-II strategy for accurate BC molecular typing and three-dimensional (3D) visualization based on the atomically precise fluorescent Au24Pr1 clusters. Single-atom Pr doping results in 3.9-fold fluorescence enhancement and long-term photostability. The Au24Pr1 clusters possess high fluorescence centered at ∼1100 nm and the SBR on pathological section diagnosis was 4 times higher than that of NIR-I imaging. This enables high spatial resolution 3D visualization of biopsy specimens, which can surmount tissue heterogeneity for clinical diagnosis of BC.


Subject(s)
Breast Neoplasms , Imaging, Three-Dimensional , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Imaging, Three-Dimensional/methods , Optical Imaging/methods , Gold/chemistry , Fluorescent Dyes/chemistry
7.
World J Clin Cases ; 12(22): 5067-5082, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39109018

ABSTRACT

BACKGROUND: Currently, traditional Chinese medicine (TCM) formulas are commonly being used as adjunctive therapy for ulcerative colitis in China. Network meta-analysis, a quantitative and comprehensive analytical method, can systematically compare the effects of different adjunctive treatment options for ulcerative colitis, providing scientific evidence for clinical decision-making. AIM: To evaluate the clinical efficacy and safety of commonly used TCM for the treatment of ulcerative colitis (UC) in clinical practice through a network meta-analysis. METHODS: Clinical randomized controlled trials of these TCM formulas used for the adjuvant treatment of UC were searched from the establishment of the databases to July 1, 2022. Studies that met the inclusion criteria were screened and evaluated for literature quality and risk of bias according to the Cochrane 5.1 standard. The methodological quality of the studies was assessed using ReviewManager (RevMan) 5.4, and a funnel plot was constructed to test for publication bias. ADDIS 1.16 statistical software was used to perform statistical analysis of the treatment measures and derive the network relationship and ranking diagrams of the various intervention measures. RESULTS: A total of 64 randomized controlled trials involving 5456 patients with UC were included in this study. The adjuvant treatment of UC using five TCM formulations was able to improve the clinical outcome of the patients. Adjuvant treatment with Baitouweng decoction (BTWT) showed a significant effect [mean difference = 36.22, 95% confidence interval (CI): 7.63 to 65.76]. For the reduction of tumor necrosis factor in patients with UC, adjunctive therapy with BTWT (mean difference = -9.55, 95%CI: -17.89 to -1.41), Shenlingbaizhu powder [SLBZS; odds ratio (OR) = 0.19, 95%CI: 0.08 to 0.39], and Shaoyao decoction (OR = -23.02, 95%CI: -33.64 to -13.14) was effective. Shaoyao decoction was more effective than BTWT (OR = 0.12, 95%CI: 0.03 to 0.39), SLBZS (OR = 0.19, 95%CI: 0.08 to 0. 39), and Xi Lei powder (OR = 0.34, 95%CI: 0.13 to 0.81) in reducing tumor necrosis factor and the recurrence rate of UC. CONCLUSION: TCM combined with mesalazine is more effective than mesalazine alone in the treatment of UC.

8.
Neuropharmacology ; 259: 110115, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39137872

ABSTRACT

Immune cells and interleukins play a crucial role in female-specific pain signaling. Interleukin 16 (IL-16) is a cytokine primarily associated with CD4+ T cell function. While previous studies have demonstrated the important role of spinal CD4+ T cells in neuropathic pain, the specific contribution of IL-16 to neuropathic pain remains unclear. In this study, by using a spinal nerve ligation (SNL)-induced neuropathic pain mice model, we found that SNL induced an increase in IL-16 mRNA levels, which persisted for a longer duration in female mice compared to male mice. Immunofluorescence analysis further confirmed enhanced IL-16- and CD4-positive signals in the spinal dorsal horn following SNL surgery in female mice. Knockdown of spinal IL-16 by siRNA or inhibition of CD4 by FGF22-IN-1, a CD4 inhibitor, attenuated established mechanical and thermal pain hypersensitivity induced by SNL. Furthermore, female mice injected with IL-16 intrathecally exhibited significant spontaneous pain, mechanical and thermal hyperalgesia, all of which could be alleviated by FGF22-IN-1 or a CD3 antibody. Additionally, IL-16 induced astrocyte activation but not microglial activation in the spinal dorsal horn of female mice. Meanwhile, astrocyte activation could be suppressed by the CD3 antibody. These results provide compelling evidence that IL-16 promotes astrocyte activation via CD4 on CD3+ T cells, which is critical for maintaining neuropathic pain in female mice.


Subject(s)
Astrocytes , CD3 Complex , Interleukin-16 , Neuralgia , Signal Transduction , Animals , Neuralgia/metabolism , Female , Astrocytes/metabolism , Astrocytes/drug effects , Mice , Male , CD3 Complex/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Interleukin-16/metabolism , CD4 Antigens/metabolism , Hyperalgesia/metabolism , Mice, Inbred C57BL , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects
9.
Chemistry ; : e202402806, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180461

ABSTRACT

Tunable luminescence-assisted information storage and encryption holds increasing significance in today's society. A promising approach to incorporating the benefits of both organic long persistent luminescent (LPL) materials and rare-earth (RE) luminescence lies in utilizing organic host materials to sensitize RE luminescence, as well as hydrogen-bonded organic framework (HOF) phosphorescence Förster resonance energy transfer to RE compound luminescence. This work introduces a one-pot, in situ pyrolytic condensation method, achieved through high-temperature melting calcination, to synthesize lanthanide ion-doped HOF materials. This method circumvents the drawback of molecular triplet energy annihilation, enabling the creation of organic LPL materials with RE characteristics. The HOF material serves as the host, exhibiting blue phosphorescence and cyan LPL. By fine-tuning the doping amount, the composite material U-Tb-100 achieves green LPL with a luminescent quantum yield of 56.4%, and an LPL duration of approximately 2-3 s, demonstrating tunable persistence. Single-crystal X-ray diffraction, spectral analysis, and theoretical calculation unveil that U-Tb-100 exhibits exceptional quantum yield and long-lived luminescence primarily due to the efficient sensitization of U monomer to RE ions and the PRET process between U and RE complexes. This ingenious strategy not only expands the repertoire of HOF materials but also facilitates the design of multifunctional LPL materials.

10.
Bioorg Med Chem ; 111: 117869, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39126834

ABSTRACT

Recently, the sortilin receptor (SORT1) was found to be preferentially over-expressed on the surface of many cancer cells, which makes SORT1 a novel anticancer target. The SORT1 binding proprietary peptide TH19P01 could achieve the SORT1-mediated cancer cell binding and subsequent internalization. Inspired by the peptide-drug conjugate (PDC) strategy, the TH19P01-camptothecin (CPT) conjugates were designed, efficiently synthesized, and evaluated for their anticancer potential in this study. The water solubility, in vitro anticancer activity, time-kill kinetics, cellular uptake, anti-migration activity, and hemolysis effects were systematically estimated. Besides, in order to monitor the release of CPT from conjugates in real-time, the CPT/Dnp-based "turn on" hybrid peptide was designed, which indicted that CPT could be sustainably released from the hybrid peptide in both human serum and cancer cellular environments. Strikingly, compared with free CPT, the water solubility, cellular uptake, and selectivity towards cancer cells of hybrid peptide LYJ-2 have all been significantly enhanced. Moreover, unlike free CPT or TH19P01, LYJ-2 exhibited selective anti-proliferative and anti-migration effects against SORT1-positive MDA-MB-231 cells. Collectively, this study not only established efficient strategies to improve the solubility and anticancer potential of chemotherapeutic agent CPT, but also provided important references for the future development of TH19P01 based PDCs targeting SORT1.


Subject(s)
Adaptor Proteins, Vesicular Transport , Antineoplastic Agents , Camptothecin , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Humans , Camptothecin/pharmacology , Camptothecin/chemistry , Camptothecin/chemical synthesis , Adaptor Proteins, Vesicular Transport/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Cell Line, Tumor , Dose-Response Relationship, Drug , Cell Movement/drug effects
11.
ACS Appl Mater Interfaces ; 16(28): 36047-36062, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38978477

ABSTRACT

Sepsis, a life-threatening condition caused by a dysregulated immune response to infection, leads to systemic inflammation, immune dysfunction, and multiorgan damage. Various oxidoreductases play a very important role in balancing oxidative stress and modulating the immune response, but they are stored inconveniently, environmentally unstable, and expensive. Herein, we develop multifunctional artificial enzymes, CeO2 and Au/CeO2 nanozymes, exhibiting five distinct enzyme-like activities, namely, superoxide dismutase, catalase, glutathione peroxidase, peroxidase, and oxidase. These artificial enzymes have been used for the biocatalytic treatment of sepsis via inhibiting inflammation and modulating immune responses. These nanozymes significantly reduce reactive oxygen species and proinflammatory cytokines, achieving multiorgan protection. Notably, CeO2 and Au/CeO2 nanozymes with enzyme-mimicking activities can be particularly effective in restoring immunosuppression and maintaining homeostasis. The redox nanozyme offers a promising dual-protective strategy against sepsis-induced inflammation and organ dysfunction, paving the way for biocatalytic-based immunotherapies for sepsis and related inflammatory diseases.


Subject(s)
Cerium , Gold , Inflammation , Sepsis , Sepsis/drug therapy , Sepsis/immunology , Animals , Inflammation/drug therapy , Inflammation/immunology , Gold/chemistry , Cerium/chemistry , Cerium/therapeutic use , Mice , Humans , Reactive Oxygen Species/metabolism , Catalase/metabolism , Catalase/chemistry , Cytokines/metabolism
12.
Emerg Microbes Infect ; 13(1): 2382236, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39017656

ABSTRACT

The incompletely eliminated Treponema pallidum (T. pallidum) during primary syphilis chancre infection can result in the progression of secondary, tertiary, or latent syphilis in individuals, suggesting that T. pallidum has successfully evaded the immune response and spread to distant sites. The mechanism underlying the dissemination of T. pallidum is unclear. Here, a syphilitic rabbit model dorsal-injected with recombinant Tp0136 protein or Tp0136 antibody subcutaneously was used to demonstrate the role of Tp0136 protein in promoting the dissemination of T. pallidum to the testis and angiogenesis in vivo; vascular endothelial cell line HMEC-1 was employed to display that Tp0136 protein enhances the angiogenesis. Furthermore, the three-dimensional microfluidic angiogenesis system showed that the angiogenesis would heighten vascular permeability. Then transcriptome sequencing analysis, in conjunction with cell-level validation, elucidated the critical role of the PI3K-AKT signaling pathway in the promotion of angiogenesis by Tp0136 protein, resulting in heightened permeability. These findings elucidate the strategy employed by T. pallidum in evading immune clearance.


Subject(s)
Angiogenesis , Bacterial Proteins , Syphilis , Treponema pallidum , Animals , Humans , Male , Rabbits , Angiogenesis/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , Disease Models, Animal , Endothelial Cells/microbiology , Neovascularization, Pathologic/microbiology , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction , Syphilis/microbiology , Treponema pallidum/genetics
13.
Chin J Integr Med ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958884

ABSTRACT

Hypertensive renal damage (HRD) is a major cause of end-stage renal disease. Among the causes of end-stage renal disease, HRD accounts for nearly 34% of the total number of cases. Antihypertensive treatment is primarily drug-based, but therapeutic efficacy is less effective and can have serious side effects. Chinese medicine (CM) has significant advantages in the treatment of HRD. CM is rich in various active ingredients and has the property of targeting multiple targets and channels. Therefore, the regulatory network of CM on disease is complex. A large number of CM have been employed to treat HRD, either as single applications or as part of compound formulations. The key possible mechanisms of CM for HRD include regulation of the renin-angiotensin-aldosterone system, antioxidation, anti-inflammation, rescue of endothelial function, regulation of vasoactive substance secretion and obesity-related factors, etc. This review summarized and discussed the recent advance in the basic research mechanisms of CM interventions for HRD and pointed out the challenges and future prospects.

14.
Int J Surg ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913440

ABSTRACT

BACKGROUND: Visceral pain occurs commonly following thoracic surgery, but an effective method to relieve visceral pain in thoracic surgery remains controversial. We test the effect of stellate ganglion blocks (SGB) on perioperative visceral pain following video-assisted thoracoscopic surgery (VATS). METHODS: A prospective, randomized, controlled trial enrolled 77 elderly patients undergoing VATS. Patients were randomized to SGB followed by modified intercostal nerve block (Group S, n=37); or modified intercostal nerve block only (Group C, n=40). Remifentanil 0.02-0.2 µg·kg-1·min-1 was titrated to keep pain threshold index values between 40-65 and maintain mean arterial pressure or heart rate values around 20% of baseline values. Patient-controlled intravenous analgesia with sufentanil was used in the postoperative period. The co-primary outcomes were the perioperative cumulative opioid consumption and pain scores on movement at 24 h after surgery. RESULTS: Compared with control group, SGB greatly reduced the intraoperative remifentanil consumption[300.00(235.00-450.00)µg versus 710.00(500.00-915.00)µg; P<0.01], with no difference in cumulative sufentanil consumption to 48h post-surgery. There was a statistically significant difference in pain scores on movement at 24h between groups [4.00(3.00-4.00) versus 4.00(3.25-5.00); P=0.01]. Further exploratory analyses showed significant difference for intra-chest pain on movement at 24h [3.00(2.00-3.00) versus 3.00(2.25-4.00); P=0.01]. No significant difference was observed in nausea/vomiting, time to pass flatus and postoperative length of stay. CONCLUSION: Preoperative stellate ganglion blocks for elderly patients could effectively blunt intraoperative visceral stress and reduce postoperative visceral pain extending 24 h after VATS. This initial finding deserve further investigation.

15.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 611-618, 2024 Jun 15.
Article in Chinese | MEDLINE | ID: mdl-38926378

ABSTRACT

OBJECTIVES: To investigate the risk factors for bronchopulmonary dysplasia (BPD) in twin preterm infants with a gestational age of <34 weeks, and to provide a basis for early identification of BPD in twin preterm infants in clinical practice. METHODS: A retrospective analysis was performed for the twin preterm infants with a gestational age of <34 weeks who were admitted to 22 hospitals nationwide from January 2018 to December 2020. According to their conditions, they were divided into group A (both twins had BPD), group B (only one twin had BPD), and group C (neither twin had BPD). The risk factors for BPD in twin preterm infants were analyzed. Further analysis was conducted on group B to investigate the postnatal risk factors for BPD within twins. RESULTS: A total of 904 pairs of twins with a gestational age of <34 weeks were included in this study. The multivariate logistic regression analysis showed that compared with group C, birth weight discordance of >25% between the twins was an independent risk factor for BPD in one of the twins (OR=3.370, 95%CI: 1.500-7.568, P<0.05), and high gestational age at birth was a protective factor against BPD (P<0.05). The conditional logistic regression analysis of group B showed that small-for-gestational-age (SGA) birth was an independent risk factor for BPD in individual twins (OR=5.017, 95%CI: 1.040-24.190, P<0.05). CONCLUSIONS: The development of BPD in twin preterm infants is associated with gestational age, birth weight discordance between the twins, and SGA birth.


Subject(s)
Bronchopulmonary Dysplasia , Infant, Premature , Twins , Humans , Bronchopulmonary Dysplasia/etiology , Bronchopulmonary Dysplasia/epidemiology , Risk Factors , Infant, Newborn , Female , Retrospective Studies , Male , Gestational Age , Birth Weight , Logistic Models
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 974-978, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926999

ABSTRACT

In recent years, the importance of long non-coding RNA (lncRNA) in acute myeloid leukemia (AML) has attracted wide attention. Among them, lncRNAs that play a role in promoting cancer mainly include HOTAIR, UCA1, H19, ITGB2-AS1 and some genes of SNHG family, while in tumor suppression mainly include H22954, NEAT1, SNHG4, LINC01128 , etc. This article reviews the role of lncRNAs in the occurrence and development of AML, as well as those related to AML resistance and prognosis assessment, so as to provide a theoretical basis for the diagnosis and prognosis analysis of AML.


Subject(s)
Leukemia, Myeloid, Acute , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Prognosis
17.
Adv Mater ; 36(32): e2401299, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38837520

ABSTRACT

Thermal insulation under extreme conditions requires the materials to be capable of withstanding complex thermo-mechanical stress, significant gradient temperature transition, and high-frequency thermal shock. The excellent structural and functional properties of ceramic aerogels make them attractive for thermal insulation. However, in extremely high-temperature environments (above 1500 °C), they typically exhibit limited insulation capacity and thermo-mechanical stability, which may lead to catastrophic accidents, and this problem is never effectively addressed. Here, a novel ceramic meta-aerogel constructed from a crosslinked nanofiber network using a reaction electrospinning strategy, which ensures excellent thermo-mechanical stability and superinsulation under extreme conditions, is designed. The ceramic meta-aerogel has an ultralow thermal conductivity of 0.027 W m-1 k-1, and the cold surface temperature is only 303 °C in a 1700 °C high-temperature environment. After undergoing a significant gradient temperature transition from liquid nitrogen to 1700 °C flame burning, the ceramic meta-aerogel can still withstand thousands of shears, flexures, compressions, and other complex forms of mechanical action without structural collapse. This work provides a new insight for developing ceramic aerogels that can be used for a long period in extremely high-temperature environments.

18.
Sci Total Environ ; 946: 174057, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38914340

ABSTRACT

Root-associated microbiota provide great fitness to hosts under environmental stress. However, the underlying microecological mechanisms controlling the interaction between heavy metal-stressed plants and the microbiota are poorly understood. In this study, we screened and isolated representative amplicon sequence variants (strain M4) from rhizosphere soil samples of Trifolium repens L. growing in areas with high concentrations of heavy metals. To investigate the microecological mechanisms by which T. repens adapts to heavy metal stress in abandoned mining areas, we conducted potting experiments, bacterial growth promotion experiments, biofilm formation experiments, and chemotaxis experiments. The results showed that high concentrations of heavy metals significantly altered the rhizosphere bacterial community structure of T. repens and significantly enriched Microbacterium sp. Strain M4 was demonstrated to significantly increased the biomass and root length of T. repens under heavy metal stress. Additionally, L-proline and stigmasterol could promote bacterial growth and biofilm formation and induce chemotaxis for strain M4, suggesting that they are key rhizosphere secretions of T. repens for Microbacterium sp. recruitment. Our results suggested that T. repens adapted the heavy metal stress by reshaping rhizosphere secretions to modify the rhizosphere microbiota.


Subject(s)
Metals, Heavy , Microbacterium , Mining , Plant Roots , Rhizosphere , Soil Microbiology , Soil Pollutants , Trifolium , Trifolium/microbiology , Soil Pollutants/toxicity , Plant Roots/microbiology , Microbacterium/physiology , Microbiota/drug effects , Lead/toxicity , Zinc
19.
J Antimicrob Chemother ; 79(8): 1951-1961, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38863365

ABSTRACT

OBJECTIVES: Pseudomonas aeruginosa and Acinetobacter baumannii are ranked as top-priority organisms by WHO. Antimicrobial peptides (AMPs) are promising antimicrobial agents that are highly effective against serious bacterial infections. METHODS: In our previous study, a series of α-helical AMPs were screened using a novel multiple-descriptor strategy. The current research suggested that S24 exhibited strong antimicrobial activity against major pathogenic bacteria, and displayed minimal haemolysis, good serum stability and maintained salt resistance. RESULTS: We found that S24 exerted an antimicrobial effect by destroying outer membrane permeability and producing a strong binding effect on bacterial genomic DNA that inhibits genomic DNA migration. Furthermore, S24 exerted a strong ability to promote healing in wound infected by P. aeruginosa, A. baumannii and mixed strains in a mouse model. CONCLUSIONS: Overall, S24 showed good stability under physiological conditions and excellent antimicrobial activity, suggesting it may be a potential candidate for the development of serious bacterial infection treatment.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Wound Infection , Acinetobacter baumannii/drug effects , Pseudomonas aeruginosa/drug effects , Animals , Wound Infection/drug therapy , Wound Infection/microbiology , Mice , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Disease Models, Animal , Cell Membrane Permeability/drug effects , Humans , DNA, Bacterial/genetics
20.
J Agric Food Chem ; 72(27): 15293-15300, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38940657

ABSTRACT

Hydroxytyrosol, a naturally occurring compound with antioxidant and antiviral activity, is widely applied in the cosmetic, food, and nutraceutical industries. The development of a biocatalytic approach for producing hydroxytyrosol from simple and readily accessible substrates remains a challenge. Here, we designed and implemented an effective biocatalytic cascade to obtain hydroxytyrosol from 3,4-dihydroxybenzaldehyde and l-threonine via a four-step enzymatic cascade composed of seven enzymes. To prevent cross-reactions and protein expression burden caused by multiple enzymes expressed in a single cell, the designed enzymatic cascade was divided into two modules and catalyzed in a stepwise manner. The first module (FM) assisted the assembly of 3,4-dihydroxybenzaldehyde and l-threonine into (2S,3R)-2-amino-3-(3,4-dihydroxyphenyl)-3-hydroxypropanoic acid, and the second module (SM) entailed converting (2S,3R)-2-amino-3-(3,4-dihydroxyphenyl)-3-hydroxypropanoic acid into hydroxytyrosol. Each module was cloned into Escherichia coli BL21 (DE3) and engineered in parallel by fine-tuning enzyme expression, resulting in two engineered whole-cell catalyst modules, BL21(FM01) and BL21(SM13), capable of converting 30 mM 3,4-dihydroxybenzaldehyde to 28.7 mM hydroxytyrosol with a high space-time yield (0.88 g/L/h). To summarize, the current study proposes a simple and effective approach for biosynthesizing hydroxytyrosol from low-cost substrates and thus has great potential for industrial applications.


Subject(s)
Biocatalysis , Escherichia coli , Phenylethyl Alcohol , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Benzaldehydes/chemistry , Benzaldehydes/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL